From 0aed181e8db9c612401e2c5ad65abee29aca3160 Mon Sep 17 00:00:00 2001 From: Brantegger Georg Date: Wed, 25 Jan 2023 09:06:31 +0100 Subject: [PATCH] update HPP parameters to get a possible consistent config --- KW Arriach.ipynb | 472 ++++++++++++++++++++++++++--------------------- 1 file changed, 260 insertions(+), 212 deletions(-) diff --git a/KW Arriach.ipynb b/KW Arriach.ipynb index ade431e..b7ebb0d 100644 --- a/KW Arriach.ipynb +++ b/KW Arriach.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -36,20 +36,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.2\n", + "60.0\n" + ] + } + ], "source": [ - "i = 19\n", - "j = 6\n", + "i = 1\n", + "j = 2\n", "\n", "Kp_list = np.arange(0.1,2.1,0.1)\n", - "Area_list = np.arange(20.,160.,20.)" + "Area_list = np.arange(20.,160.,20.)\n", + "\n", + "print(Kp_list[i])\n", + "print(Area_list[j])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -57,30 +69,31 @@ "\n", " # for physics\n", "g = 9.81 # [m/s²] gravitational acceleration \n", - "rho = 1000. # [kg/m³] density of water \n", + "rho = 0.9982067*1e3 # [kg/m³] density of water \n", "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", "\n", " # for KW OL \n", - "OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "OL_T1_closingTime = 100. # [s] closing time of turbine\n", + "OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_T1_closingTime = 30. # [s] closing time of turbine\n", "\n", - "OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "OL_T2_closingTime = 100. # [s] closing time of turbine\n", + " # simulation of \"Bacheinzug\"\n", + "OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_T2_closingTime = 600. # [s] closing time of turbine\n", "\n", " # for KW UL\n", - "UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "UL_T1_closingTime = 160. # [s] closing time of turbine\n", + "UL_T1_Q_nenn = 1.8 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(48.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 30. # [s] closing time of turbine\n", "\n", - "UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "UL_T2_closingTime = 160. # [s] closing time of turbine\n", + "UL_T2_Q_nenn = 1.8 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(48.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_closingTime = 30. # [s] closing time of turbine\n", "\n", " # for PI controller\n", - "Con_targetLevel = 2. # [m]\n", + "Con_targetLevel = 1.05 # [m]\n", "Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n", "Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n", "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", @@ -89,7 +102,7 @@ "Pip_length = 2300. # [m] length of pipeline\n", "Pip_dia = 1.0 # [m] diameter of pipeline\n", "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", - "Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n", + "Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n", "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", "Pip_f_D = 0.015 # [-] Darcy friction factor\n", @@ -104,24 +117,24 @@ " # for reservoir\n", "Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n", "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", - "Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n", "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", "\n", " # for general simulation\n", - "# flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n", - "OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", + "flux_init = 0. # [m³/s] initial flux through whole system for steady state initialization \n", + "# OL_LAs_init = [1.,1.] # [vec] initial guide vane openings of OL-KW\n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", - "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "simTime_target = 2400. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -135,9 +148,9 @@ "KW_OL.add_turbine(OL_T1)\n", "KW_OL.add_turbine(OL_T2)\n", "\n", - "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_T1_p_nenn)\n", + "KW_OL.set_steady_state_by_flux(flux_init,OL_T1_p_nenn*1.1)\n", "\n", - "flux_init = KW_OL.get_current_Q()\n", + "# flux_init = KW_OL.get_current_Q()\n", "\n", "# Upstream reservoir\n", "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", @@ -164,7 +177,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# print(reservoir.get_info(full=True))\n", + "\n", + "# print(pipe.get_info())\n", + "# print(pipe.v)\n", + "# print(pipe.p)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -212,7 +238,7 @@ "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = 1.\n", "\n", "\n", - "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T2_LA_soll_vec = OL_T1_LA_soll_vec.copy() # storing the target value for the guide van opening\n", "\n", "\n", "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", @@ -237,71 +263,71 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ - "# %matplotlib qt5\n", - "# # displaying the guide vane openings\n", - "# fig0,axs0 = plt.subplots(1,1)\n", - "# axs0.set_title('LA')\n", - "# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", - "# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", - "# axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "%matplotlib qt5\n", + "# displaying the guide vane openings\n", + "fig0,axs0 = plt.subplots(1,1)\n", + "axs0.set_title('LA')\n", + "axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", + "axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", - "# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "# axs0.set_ylabel(r'$LA$ [%]')\n", - "# axs0.legend()\n", - "# plt.pause(2)" + "axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs0.set_ylabel(r'$LA$ [%]')\n", + "axs0.legend()\n", + "plt.pause(2)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "%matplotlib qt5\n", "# Time loop\n", "\n", - "# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", - "# fig1,axs1 = plt.subplots(3,1)\n", - "# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", - "# axs1[0].set_title('Pressure distribution in pipeline')\n", - "# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')c\n", - "# axs1[0].set_ylim([-2,50])\n", - "# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", - "# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "# axs1[1].set_ylim([-2,20])\n", - "# axs1[2].set_title('Flux distribution in pipeline')\n", - "# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", - "# axs1[2].set_ylim([-1,10])\n", - "# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", - "# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", - "# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", - "# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", - "# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", - "# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", - "# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", - "# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", - "# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "fig1,axs1 = plt.subplots(3,1)\n", + "fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + "axs1[0].set_title('Pressure distribution in pipeline')\n", + "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[0].set_ylim([-2,80])\n", + "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", + "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[1].set_ylim([-30,20])\n", + "axs1[2].set_title('Flux distribution in pipeline')\n", + "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "axs1[2].set_ylim([-1,10])\n", + "lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", + "lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", "\n", - "# # axs1[0].autoscale()\n", - "# # axs1[1].autoscale()\n", + "# axs1[0].autoscale()\n", + "# axs1[1].autoscale()\n", "\n", - "# fig1.tight_layout()\n", - "# fig1.show()\n", - "# plt.pause(1)\n" + "fig1.tight_layout()\n", + "fig1.show()\n", + "plt.pause(1)\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -360,165 +386,187 @@ " v_old = pipe.get_current_velocity_distribution()\n", " Q_old = pipe.get_current_flux_distribution()\n", "\n", - " # # plot some stuff\n", - " # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", - " # if it_pipe%50 == 0:\n", - " # lo_0.remove()\n", - " # lo_0min.remove()\n", - " # lo_0max.remove()\n", - " # lo_1.remove()\n", - " # lo_1min.remove()\n", - " # lo_1max.remove()\n", - " # lo_2.remove()\n", - " # lo_2min.remove()\n", - " # lo_2max.remove()\n", - " # # plot new pressure and velocity distribution in the pipeline\n", - " # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", - " # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", - " # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", - " # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", - " # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", - " # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", - " # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", - " # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", - " # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", - " # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", - " # fig1.canvas.draw()\n", - " # fig1.tight_layout()\n", - " # fig1.show()\n", - " # plt.pause(0.1) " + " # plot some stuff\n", + " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " if it_pipe%50 == 0:\n", + " lo_0.remove()\n", + " lo_0min.remove()\n", + " lo_0max.remove()\n", + " lo_1.remove()\n", + " lo_1min.remove()\n", + " lo_1max.remove()\n", + " lo_2.remove()\n", + " lo_2min.remove()\n", + " lo_2max.remove()\n", + " # plot new pressure and velocity distribution in the pipeline\n", + " lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + " fig1.canvas.draw()\n", + " fig1.tight_layout()\n", + " fig1.show()\n", + " plt.pause(0.1) " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ - "# fig2,axs2 = plt.subplots(1,1)\n", - "# axs2.set_title('Level and Volume reservoir')\n", - "# axs2.plot(t_vec,level_vec,label='level')\n", - "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "# axs2.set_ylabel(r'$h$ [m]')\n", - "# x_twin_00 = axs2.twinx()\n", - "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", - "# x_twin_00.plot(t_vec,volume_vec)\n", - "# axs2.legend()\n", + "level_plot_min = 0\n", + "level_plot_max = 3\n", + "volume_plot_min = level_plot_min*Res_area_base\n", + "volume_plot_max = level_plot_max*Res_area_base\n", "\n", - "# fig2,axs2 = plt.subplots(1,1)\n", - "# axs2.set_title('LA')\n", - "# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", - "# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", - "# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", - "# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", - "# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", - "# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", - "# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", - "# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", - "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "# axs2.set_ylabel(r'$LA$ [%]')\n", - "# axs2.legend()\n", - "\n", - "# fig2,axs2 = plt.subplots(1,1)\n", - "# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", - "# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", - "# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", - "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "# axs2.legend()\n", - "\n", - "# fig2,axs2 = plt.subplots(1,1)\n", - "# axs2.set_title('Fluxes')\n", - "# axs2.plot(t_vec,Q_in_vec,label='Influx')\n", - "# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", - "# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", - "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", - "# axs2.legend()\n", - "\n", - "# fig2,axs2 = plt.subplots(1,1)\n", - "# axs2.set_title('Min and Max Pressure')\n", - "# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", - "# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", - "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "\n", - "# # fig2,axs2 = plt.subplots(1,1)\n", - "# # axs2.set_title('Min and Max Fluxes')\n", - "# # axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", - "# # axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", - "# # axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# # axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", - "\n", - "\n", - "# fig2.tight_layout()\n", - "# plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", - "fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n", - "axs3[0,0].set_title('Level and Volume reservoir')\n", - "axs3[0,0].plot(t_vec,level_vec,label='level')\n", - "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[0,0].set_ylabel(r'$h$ [m]')\n", - "axs3[0,0].set_ylim(0,3.5)\n", - "x_twin_00 = axs3[0,0].twinx()\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Level and Volume reservoir')\n", + "axs2.plot(t_vec,level_vec,label='level')\n", + "axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$h$ [m]')\n", + "axs2.set_ylim(level_plot_min,level_plot_max)\n", + "x_twin_00 = axs2.twinx()\n", "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", "x_twin_00.plot(t_vec,volume_vec)\n", - "x_twin_00.set_ylim(0,3.5*Res_area_base)\n", - "axs3[0,0].legend()\n", + "x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", + "axs2.legend()\n", "\n", - "axs3[0,1].set_title('LA')\n", - "axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", - "axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", - "axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", - "axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", - "axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", - "axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", - "axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", - "axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", - "axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[0,1].set_ylabel(r'$LA$ [%]')\n", - "axs3[0,1].legend()\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('LA')\n", + "axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$LA$ [%]')\n", + "axs2.legend()\n", "\n", - "axs3[1,0].set_title('Fluxes')\n", - "axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", - "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", - "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", - "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", - "axs3[1,0].legend()\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs2.legend()\n", "\n", - "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", - "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", - "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", - "axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "axs3[1,1].legend()\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Fluxes')\n", + "axs2.plot(t_vec,Q_in_vec,label='Influx')\n", + "axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", + "axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "axs2.legend()\n", "\n", - "fig3.tight_layout()\n", - "plt.show()\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Min and Max Pressure')\n", + "axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", + "axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", + "axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", "\n", - "figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", - "fig3.savefig(figname)" + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Min and Max Fluxes')\n", + "# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "\n", + "\n", + "fig2.tight_layout()\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ - "print(level_vec[0]-np.min(level_vec))\n", - "print(level_vec[np.argmin(np.abs(t_vec-600))])\n", - "print(np.max(level_vec)-level_vec[0])" + "\n", + "# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n", + "# axs3[0,0].set_title('Level and Volume reservoir')\n", + "# axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "# axs3[0,0].set_ylim(0,3.5)\n", + "# x_twin_00 = axs3[0,0].twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# x_twin_00.set_ylim(0,3.5*Res_area_base)\n", + "# axs3[0,0].legend()\n", + "\n", + "# axs3[0,1].set_title('LA')\n", + "# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "# axs3[0,1].legend()\n", + "\n", + "# axs3[1,0].set_title('Fluxes')\n", + "# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs3[1,0].legend()\n", + "\n", + "# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs3[1,1].legend()\n", + "\n", + "# fig3.tight_layout()\n", + "# plt.show()\n", + "\n", + "# figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", + "# fig3.savefig(figname)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.08482919 4.08482935 4.08482952 4.08482968 4.08482985 4.08483001\n", + " 4.08483017 4.08483033 4.08483048 4.08483064 4.08483079 4.08483095\n", + " 4.0848311 4.08483125 4.0848314 4.08483154 4.08483169 4.08483183\n", + " 4.08483198 4.08483212 4.08483226 4.0848324 4.08483253 4.08483267\n", + " 4.0848328 4.08483293 4.08483306 4.08483319 4.08483332 4.08483345\n", + " 4.08483357 4.0848337 4.08483382 4.08483394 4.08483406 4.08483418\n", + " 4.0848343 4.08483441 4.08483452 4.08483464 4.08483475 4.08483486\n", + " 4.08483496 4.08483507 4.08483517 4.08483528 4.08483538 4.08483548\n", + " 4.08483558 4.08483568 4.08483577]\n" + ] + } + ], + "source": [ + "print(pipe.v)" ] } ],