build a programm to test e-RK4-function - NOT WORKING YET

This commit is contained in:
Brantegger Georg
2022-06-14 14:25:51 +02:00
parent d73bc99f49
commit 115e59af3b
5 changed files with 189 additions and 5 deletions

View File

@@ -0,0 +1,84 @@
from Ausgleichsbecken import FODE_function, get_h_halfstep, get_p_halfstep
class Ausgleichsbecken_class:
# units
area_unit = 'm^2'
area_outflux_unit = 'm^2'
level_unit = 'm'
volume_unit = 'm^3'
flux_unit = 'm^3/s'
time_unit = 's'
# init
def __init__(self,area,outflux_area,level_min,level_max,timestep = 1):
self.area = area # base area of the rectangular structure
self.area_outflux = outflux_area # area of the outlet towards the pipeline
self.level_min = level_min # lowest allowed water level
self.level_max = level_max # highest allowed water level
self.timestep = timestep # timestep of the simulation
# setter
def set_volume(self):
self.volume = self.level*self.area
def set_initial_level(self,initial_level):
self.level = initial_level
self.set_volume()
def set_influx(self,influx):
self.influx = influx
def set_outflux(self,outflux):
self.outflux = outflux
# getter
def get_area(self):
print('The base area of the cuboid reservoir is', self.area, self.area_unit)
def get_outflux_area(self):
print('The outflux area from the cuboid reservoir to the pipeline is', \
self.area_outflux, self.area_outflux_unit)
def get_level(self):
print('The current level in the reservoir is', self.level , self.level_unit)
def get_crit_levels(self):
print('The critical water levels in the reservoir are: \n',\
' Minimum:', self.level_min , self.level_unit , '\n',\
' Maximum:', self.level_max , self.level_unit )
def get_volume(self):
print('The current water volume in the reservoir is', self.volume, self.volume_unit)
def get_timestep(self):
print('The timestep for the simulation is' , self.timestep, self.time_unit)
def get_influx(self):
print('The current influx is', self.influx, self.flux_unit)
def get_outflux(self):
print('The current outflux is', self.outflux, self.flux_unit)
# methods
def update_level(self,timestep):
net_flux = self.influx-self.outflux
delta_V = net_flux*timestep
new_level = (self.volume+delta_V)/self.area
return new_level
def e_RK_4(self):
yn = self.outflux/self.area_outflux
h = self.level
dt = self.timestep
p = self.p0
p_hs = self.p0
alpha = (self.area/self.area_outflux-1)
h_hs = self.update_level(dt/2)
Y1 = yn
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.p0)
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
self.outflux = ynp1*self.area_outflux