diff --git a/Ausgleichsbecken/dynamic_pipeline_pressure/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/dynamic_pipeline_pressure/Ausgleichsbecken_class_file.py index b1275c8..64716ea 100644 --- a/Ausgleichsbecken/dynamic_pipeline_pressure/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/dynamic_pipeline_pressure/Ausgleichsbecken_class_file.py @@ -69,7 +69,6 @@ class Ausgleichsbecken_class: def e_RK_4(self): - # Update to deal with non constant pipeline pressure! yn = self.outflux/self.area_outflux h = self.level dt = self.timestep diff --git a/Ausgleichsbecken/dynamic_pipeline_pressure/Main_Program.ipynb b/Ausgleichsbecken/dynamic_pipeline_pressure/Main_Program.ipynb index 51890e2..233f368 100644 --- a/Ausgleichsbecken/dynamic_pipeline_pressure/Main_Program.ipynb +++ b/Ausgleichsbecken/dynamic_pipeline_pressure/Main_Program.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 34, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -39,13 +39,13 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ece5839afa864ae2b836269b18279459", + "model_id": "ad0ac3d52f5b4c5ba1d465ae850c9e69", "version_major": 2, "version_minor": 0 }, diff --git a/Druckrohrleitung/Druckstoß.ipynb b/Druckrohrleitung/Druckstoß_ETH.ipynb similarity index 51% rename from Druckrohrleitung/Druckstoß.ipynb rename to Druckrohrleitung/Druckstoß_ETH.ipynb index 9fabf34..1f22bee 100644 --- a/Druckrohrleitung/Druckstoß.ipynb +++ b/Druckrohrleitung/Druckstoß_ETH.ipynb @@ -2,18 +2,19 @@ "cells": [ { "cell_type": "code", - "execution_count": 37, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#imports\n", "import numpy as np\n", - "import matplotlib.pyplot as plt" + "import matplotlib.pyplot as plt\n", + "from pressure_conversion import pressure_conversion" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -21,21 +22,21 @@ "\n", "g = 9.81 # gravitational acceleration [m/s²]\n", "\n", - "L = 100 # length of pipeline [m]\n", + "L = 1000 # length of pipeline [m]\n", "rho = 1000 # density of water [kg/m³]\n", - "D = 1 # pipe diameter \n", + "D = 1 # pipe diameter [m]\n", "Q0 = 2 # initial flow in whole pipe [m³/s]\n", "h = 20 # water level in upstream reservoir [m]\n", - "n = 10 # number of pipe segments in discretization\n", - "nt = 150 # number of time steps\n", - "f_coeff = 0.1 # lambda = 0.01 Friction loss coefficient [m]\n", - "c = 400 # propagation velocity of the pressure wave\n", + "n = 10 # number of pipe segments in discretization\n", + "nt = 11 # number of time steps\n", + "f_D = 0.01 # Darcy friction factor\n", + "c = 400 # propagation velocity of the pressure wave [m/s]\n", "\n" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -45,95 +46,128 @@ "dt = dx/c # timestep according to method of characterisitics\n", "nn = n+1 # number of nodes\n", "pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n", - "t_vec = np.arange(0,(nt)*dt,dt) # time vector\n", + "t_vec = np.arange(0,(nt)*dt,dt) # time vector\n", "\n", "v0 = Q0/(D**2/4*np.pi)\n", "p0 = (rho*g*h-v0**2*rho/2)\n", "\n", "# storage vectors for old parameters\n", "v_old = np.full(nn,v0)\n", - "p_old = p0-(f_coeff*pl_vec/D*rho/2*v0**2) # ref Wikipedia: Rohrreibungszahls\n", + "p_old = p0-(f_D*pl_vec/D*rho/2*v0**2) # ref Wikipedia: Rohrreibungszahls\n", "\n", "# storage vectors for new parameters\n", "v_new = np.zeros_like(v_old)\n", "p_new = np.zeros_like(p_old)\n", "\n", - "# storage vector for time evolution of parameters at node nn (at reservoir)\n", - "p_nn = np.zeros_like(t_vec)\n", - "v_nn = np.zeros_like(t_vec)\n", + "# storage vector for time evolution of parameters at node 1 (at reservoir)\n", + "p_1 = np.zeros_like(t_vec)\n", + "v_1 = np.zeros_like(t_vec)\n", + "\n", + "# storage vector for time evolution of parameters at node N+1 (at valve)\n", + "p_np1 = np.zeros_like(t_vec)\n", + "v_np1 = np.zeros_like(t_vec)\n", "\n" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(-5.092958178940651, 5.092958178940651)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "%matplotlib qt\n", - "# time loop\n", + "# plotting preparation\n", "\n", - "fig = plt.figure()\n", - "ax1 = fig.add_subplot(111)\n", - "lo1, = ax1.plot(pl_vec,np.full_like(pl_vec,p0),marker='.')\n", - "ax1.set_ylim([-20*p0,20*p0])\n", + "fig1,axs1 = plt.subplots(2,1)\n", + "axs1[0].set_title('Pressure distribution in pipeline')\n", + "axs1[1].set_title('Velocity distribution in pipeline')\n", "\n", + "lo_00, = axs1[0].plot(pl_vec,p_old,marker='.')\n", + "lo_01, = axs1[1].plot(pl_vec,v_old,marker='.')\n", + "\n", + "axs1[0].set_ylim([-20*p0,20*p0])\n", + "axs1[1].set_ylim([-2*v0,2*v0])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8\n", + "[2.54647909 2.54647909 0.03242134 0.02836835 0.02431541 0.02026254\n", + " 0.01620977 0.01215711 0.00810458 0.0040522 0. ]\n", + "9\n", + "[2.54647909 0.03647353 0.03242052 0.02836756 0.02431467 0.02026188\n", + " 0.01620919 0.01215664 0.00810425 0.00405203 0. ]\n", + "10\n", + "[-2.46542799 -2.46568104 -2.46593345 -2.46618518 -2.4664362 -2.46668647\n", + " -2.46693595 -2.46718459 -2.46743236 -2.46767923 0. ]\n" + ] + } + ], + "source": [ "for it in range(nt):\n", " # set boundary conditions\n", " v_new[-1] = 0 # in front of the instantaneously closing valve, the velocity is 0\n", " p_new[0] = p0 # hydrostatic pressure from the reservoir\n", "\n", " # calculate the new parameters at first and last node\n", - " v_new[0] = v_old[1]+1/(rho*c)*(p0-p_old[1])-f_coeff*dt/(2*D)*abs(v_old[1])*v_old[1]\n", - " p_new[-1] = p_old[-2]+rho*c*v_old[-2]-rho*c*f_coeff*dt/(2*D) *abs(v_old[-2])*v_old[-2]\n", + " v_new[0] = v_old[1]+1/(rho*c)*(p0-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1]\n", + " p_new[-1] = p_old[-2]+rho*c*v_old[-2]-rho*c*f_D*dt/(2*D) *abs(v_old[-2])*v_old[-2]\n", "\n", " # calculate parameters at second to second-to-last nodes \n", " #equation 2-30 plus 2-31 (and refactor for v_i^j+1) in block 2\n", "\n", " for i in range(1,nn-1):\n", " v_new[i] = 0.5*(v_old[i-1]+v_old[i+1])+0.5/(rho*c)*(p_old[i-1]-p_old[i+1]) \\\n", - " -f_coeff*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]+abs(v_old[i+1])*v_old[i+1])\n", + " -f_D*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]+abs(v_old[i+1])*v_old[i+1])\n", "\n", " p_new[i] = 0.5*rho*c*(v_old[i-1]-v_old[i+1])+0.5*(p_old[i-1]+p_old[i+1]) \\\n", - " -rho*c*f_coeff*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]-abs(v_old[i+1])*v_old[i+1])\n", + " -rho*c*f_D*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]-abs(v_old[i+1])*v_old[i+1])\n", " \n", - " lo1.set_xdata(pl_vec)\n", - " lo1.set_ydata(p_new)\n", - " ax1.set_title(str(t_vec[it]))\n", - " fig.canvas.draw()\n", - " plt.pause(0.05)\n", "\n", - " # store parameters of node 0 (at reservoir)\n", - " p_nn[it] = p_old[-1]\n", - " v_nn[it] = v_old[-1]\n", + " lo_00.set_ydata(p_new)\n", + " lo_01.set_ydata(v_new)\n", + " \n", + " fig1.suptitle(str(it))\n", + " fig1.canvas.draw()\n", + " fig1.tight_layout()\n", + " plt.pause(0.2)\n", + "\n", + " # store parameters of node 1 (at reservoir)\n", + " p_1[it] = p_old[0]\n", + " v_1[it] = v_old[0]\n", + " # store parameters of node N+1 (at reservoir)\n", + " p_np1[it] = p_old[-1]\n", + " v_np1[it] = v_old[-1]\n", "\n", " # prepare for next loop\n", " p_old = p_new\n", " v_old = v_new\n", + " if it > 7:\n", + " print(it)\n", + " #print(pressure_conversion(p_new, input_unit= 'Pa', target_unit='Bar'))\n", + " print(v_new)\n", "\n", "\n", "\n" ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plt.plot(v_nn)" - ] } ], "metadata": { diff --git a/Druckrohrleitung/pressure_conversion.py b/Druckrohrleitung/pressure_conversion.py new file mode 100644 index 0000000..96744c4 --- /dev/null +++ b/Druckrohrleitung/pressure_conversion.py @@ -0,0 +1,77 @@ +# convert to Pa +def bar_to_pa(p): + return p*1e5 + +def mWS_to_pa(p): + return p*9.80665*1e3 + +def torr_to_pa(p): + return p*133.322 + +def atm_to_pa(p): + return p*101.325*1e3 + +def psi_to_pa(p): + return p*6894.8 + +# convert from Pa +def pa_to_bar(p): + return p*1e-5 + +def pa_to_mWS(p): + return p*1/(9.80665*1e3) + +def pa_to_torr(p): + return p/133.322 + +def pa_to_atm(p): + return p*1/(101.325*1e3) + + # converstion function + +def pa_to_psi(p): + return p/6894.8 + +def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'): + p = pressure + if input_unit.lower() == 'bar': + p_pa = bar_to_pa(p) + elif input_unit.lower() == 'mws': + p_pa = mWS_to_pa(p) + elif input_unit.lower() == 'torr': + p_pa = torr_to_pa(p) + elif input_unit.lower() == 'atm': + p_pa = atm_to_pa(p) + elif input_unit.lower() == 'psi': + p_pa = psi_to_pa(p) + elif input_unit.lower() == 'pa': + p_pa = p + else: + raise Exception('Given input unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi') + + if target_unit.lower() == 'bar': + return pa_to_bar(p_pa), target_unit + elif target_unit.lower() == 'mws': + return pa_to_mWS(p_pa), target_unit + elif target_unit.lower() == 'torr': + return pa_to_torr(p_pa), target_unit + elif target_unit.lower() == 'atm': + return pa_to_atm(p_pa), target_unit + elif target_unit.lower() =='psi': + return pa_to_psi(p_pa), target_unit + elif target_unit.lower() == 'pa': + return p_pa, target_unit + else: + raise Exception('Given target unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi') + +# testing_pressure_conversion +if __name__ == '__main__': + p = 1 + + unit_dict = ['Pa','Bar','Torr','Atm','MWS','psi'] + + for input_unit in unit_dict: + for target_unit in unit_dict: + converted_p = pressure_conversion(p,input_unit,target_unit) + print(input_unit,target_unit) + print(converted_p) \ No newline at end of file