diff --git a/Ausgleichsbecken/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/Ausgleichsbecken_class_file.py index 841e040..4956637 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/Ausgleichsbecken_class_file.py @@ -1,15 +1,18 @@ +import numpy as np from Ausgleichsbecken_functions import FODE_function, get_h_halfstep, get_p_halfstep #importing pressure conversion function import sys import os -current = os.path.dirname(os.path.realpath('Main_Programm.ipynb')) +current = os.path.dirname(os.path.realpath(__file__)) parent = os.path.dirname(current) sys.path.append(parent) from functions.pressure_conversion import pressure_conversion class Ausgleichsbecken_class: -# units +# units + # make sure that units and print units are the same + # units are used to label graphs and print units are used to have a bearable format when using pythons print() area_unit = r'$\mathrm{m}^2$' area_outflux_unit = r'$\mathrm{m}^2$' flux_unit = r'$\mathrm{m}^3/\mathrm{s}$' @@ -18,13 +21,28 @@ class Ausgleichsbecken_class: time_unit = 's' volume_unit = r'$\mathrm{m}^3$' + area_unit_print = 'm²' + area_outflux_unit_print = 'm²' + flux_unit_print = 'm³/s' + level_unit_print = 'm' + pressure_unit_print = 'Pa' + time_unit_print = 's' + volume_unit_print = 'm³' + # init - def __init__(self,area,outflux_area,level_min,level_max,timestep = 1): + def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1): self.area = area # base area of the rectangular structure self.area_outflux = outflux_area # area of the outlet towards the pipeline self.level_min = level_min # lowest allowed water level self.level_max = level_max # highest allowed water level - self.timestep = timestep # timestep of the simulation + self.timestep = timestep # timestep of the simulation + + # initialize for get_info + self.level = "--" + self.influx = "--" + self.outflux = "--" + self.volume = "--" + # setter def set_volume(self): @@ -41,32 +59,35 @@ class Ausgleichsbecken_class: self.outflux = outflux # getter - def get_area(self): - print('The base area of the cuboid reservoir is', self.area, self.area_unit) + def get_info(self, full = False): + new_line = '\n' + + if full == True: + # :<10 pads the self.value to be 10 characters wide + print_str = (f"The cuboid reservoir has the following attributes: {new_line}" + f"----------------------------- {new_line}" + f"Base area = {self.area:<10} {self.area_unit_print} {new_line}" + f"Outflux area = {self.area_outflux:<10} {self.area_outflux_unit_print} {new_line}" + f"Current level = {self.level:<10} {self.level_unit_print}{new_line}" + f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}" + f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}" + f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}" + f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}" + f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}" + f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}" + f"----------------------------- {new_line}") + else: + # :<10 pads the self.value to be 10 characters wide + print_str = (f"The current attributes are: {new_line}" + f"----------------------------- {new_line}" + f"Current level = {self.level:<10} {self.level_unit_print}{new_line}" + f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}" + f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}" + f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}" + f"----------------------------- {new_line}") - def get_outflux_area(self): - print('The outflux area from the cuboid reservoir to the pipeline is', \ - self.area_outflux, self.area_outflux_unit) - - def get_level(self): - print('The current level in the reservoir is', self.level , self.level_unit) + print(print_str) - def get_crit_levels(self): - print('The critical water levels in the reservoir are: \n',\ - ' Minimum:', self.level_min , self.level_unit , '\n',\ - ' Maximum:', self.level_max , self.level_unit ) - - def get_volume(self): - print('The current water volume in the reservoir is', self.volume, self.volume_unit) - - def get_timestep(self): - print('The timestep for the simulation is' , self.timestep, self.time_unit) - - def get_influx(self): - print('The current influx is', self.influx, self.flux_unit) - - def get_outflux(self): - print('The current outflux is', self.outflux, self.flux_unit) # methods def update_level(self,timestep): @@ -92,4 +113,4 @@ class Ausgleichsbecken_class: ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \ 2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p)) - self.outflux = ynp1*self.area_outflux \ No newline at end of file + self.outflux = ynp1*self.area_outflux diff --git a/Druckrohrleitung/Druckrohrleitung_class_file.py b/Druckrohrleitung/Druckrohrleitung_class_file.py index b0dd3d4..357186f 100644 --- a/Druckrohrleitung/Druckrohrleitung_class_file.py +++ b/Druckrohrleitung/Druckrohrleitung_class_file.py @@ -21,6 +21,17 @@ class Druckrohrleitung_class: time_unit = 's' velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation volume_unit = r'$\mathrm{m}^3$' + + acceleration_unit_print = 'm/s²' + angle_unit_print = '°' + area_unit_print = 'm²' + density_unit_print = 'kg/m³' + flux_unit_print = 'm³/s' + length_unit_print = 'm' + pressure_unit_print = 'Pa' + time_unit_print = 's' + velocity_unit_print = 'm/s' # for flux and pressure propagation + volume_unit_print = 'm³' # init @@ -36,8 +47,9 @@ class Druckrohrleitung_class: self.dx = total_length/number_segments self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx) - # workaround for try-except construct in set_number_of_timesteps - self.c = 0 + # initialize for get_info method + self.c = '--' + self.dt = '--' # setter def set_pressure_propagation_velocity(self,c): @@ -46,7 +58,7 @@ class Druckrohrleitung_class: def set_number_of_timesteps(self,number_timesteps): self.nt = number_timesteps - if self.c == 0: + if self.c == '--': raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.') else: self.t_vec = np.arange(0,self.nt*self.dt,self.dt) @@ -62,7 +74,7 @@ class Druckrohrleitung_class: #initialize the vectors in which the old and new pressures are stored for the method of characteristics self.p_old = self.p0.copy() - self.p_new = np.empty_like(self.p_old) + self.p = np.empty_like(self.p_old) def set_initial_flow_velocity(self,velocity): if np.size(velocity) == 1: @@ -74,7 +86,7 @@ class Druckrohrleitung_class: #initialize the vectors in which the old and new velocities are stored for the method of characteristics self.v_old = self.v0.copy() - self.v_new = np.empty_like(self.v_old) + self.v = np.empty_like(self.v_old) def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine,input_unit_pressure = 'Pa'): rho = self.density @@ -88,53 +100,42 @@ class Druckrohrleitung_class: self.v_boundary_tur = v_turbine self.p_boundary_res,_ = pressure_conversion(p_reservoir,input_unit_pressure,target_unit=self.pressure_unit) self.p_boundary_tur = p_old+rho*c*v_old-rho*c*f_D*dt/(2*D)*abs(v_old)*v_old - self.v_new[0] = self.v_boundary_res.copy() - self.v_new[-1] = self.v_boundary_tur.copy() - self.p_new[0] = self.p_boundary_res.copy() - self.p_new[-1] = self.p_boundary_tur.copy() + self.v[0] = self.v_boundary_res.copy() + self.v[-1] = self.v_boundary_tur.copy() + self.p[0] = self.p_boundary_res.copy() + self.p[-1] = self.p_boundary_tur.copy() # getter - def get_pipeline_geometry(self): - print('The total length of the pipeline is', '\n', \ - self.length, self.length_unit, '\n', \ - 'The diameter of the pipeline is', '\n', \ - self.dia, self.length_unit, '\n', \ - 'The pipeline is divided into', self.n_seg , 'segments of length', '\n', \ - round(self.dx,1), self.length_unit, '\n', \ - 'The pipeline has an inclination angle of', '\n', \ - self.angle, self.angle_unit) - - def get_other_pipeline_info(self): - print('The Darcy-friction factor of the pipeline is', '\n', \ - self.f_D, '\n', \ - 'The pipeline is filled with a liquid with density', '\n', \ - self.density, self.density_unit, '\n', \ - 'The gravitational acceleration is set to', '\n', \ - self.g, self.acceleration_unit) - - def get_pressure_propagation_velocity(self): - print('The pressure propagation velocity in the pipeline is', '\n', \ - self.c, self.velocity_unit) + def get_info(self): + new_line = '\n' - def get_number_of_timesteps(self): - print(self.nt, 'timesteps are performed in the simulation') + # :<10 pads the self.value to be 10 characters wide + print_str = (f"The pipeline has the following attributes: {new_line}" + f"----------------------------- {new_line}" + f"Length = {self.length:<10} {self.length_unit_print} {new_line}" + f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}" + f"Number of segemnts = {self.n_seg:<10} {new_line}" + f"Number of nodes = {self.n_seg+1:<10} {new_line}" + f"Length per segment = {self.dx:<10} {self.length_unit_print} {new_line}" + f"Pipeline angle = {self.angle:<10} {self.angle_unit_print} {new_line}" + f"Darcy friction factor = {self.f_D:<10} {new_line}" + f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}" + f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}" + f"Simulation timesteps = {self.dt:<10} {self.time_unit_print } {new_line}" + f"Number of timesteps = {self.nt:<10} {new_line}" + f"----------------------------- {new_line}" + f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object") - - def get_initial_pressure(self,target_unit='bar'): - print('The inital pressure distribution in is', '\n', \ - pressure_conversion(self.p0,self.pressure_unit,target_unit)) - - def get_initial_flow_velocity(self): - print('The inital velocity distribution is', '\n', \ - self.v0, self.velocity_unit) + print(print_str) + def get_boundary_conditions_next_timestep(self,target_unit_pressure ='bar'): print('The pressure at the reservoir for the next timestep is', '\n', \ - pressure_conversion(self.p_boundary_res,self.pressure_unit,target_unit_pressure), '\n', \ + pressure_conversion(self.p_boundary_res,self.pressure_unit_print,target_unit_pressure), '\n', \ 'The velocity at the reservoir for the next timestep is', '\n', \ self.v_boundary_res, self.velocity_unit, '\n', \ 'The pressure at the turbine for the next timestep is', '\n', \ - pressure_conversion(self.p_boundary_tur,self.pressure_unit,target_unit_pressure), '\n', \ + pressure_conversion(self.p_boundary_tur,self.pressure_unit_print,target_unit_pressure), '\n', \ 'The velocity at the turbine for the next timestep is', '\n', \ self.v_boundary_tur, self.velocity_unit) @@ -149,14 +150,14 @@ class Druckrohrleitung_class: D = self.dia for i in range(1,nn-1): - self.v_new[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \ + self.v[i] = 0.5*(self.v_old[i-1]+self.v_old[i+1])+0.5/(rho*c)*(self.p_old[i-1]-self.p_old[i+1]) \ -f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]+abs(self.v_old[i+1])*self.v_old[i+1]) - self.p_new[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \ + self.p[i] = 0.5*rho*c*(self.v_old[i-1]-self.v_old[i+1])+0.5*(self.p_old[i-1]+self.p_old[i+1]) \ -rho*c*f_D*dt/(4*D)*(abs(self.v_old[i-1])*self.v_old[i-1]-abs(self.v_old[i+1])*self.v_old[i+1]) - self.p_old = self.p_new.copy() - self.v_old = self.v_new.copy() + self.p_old = self.p.copy() + self.v_old = self.v.copy() diff --git a/Druckrohrleitung/Main_Programm.ipynb b/Druckrohrleitung/Main_Programm.ipynb index edeefbf..83bafe6 100644 --- a/Druckrohrleitung/Main_Programm.ipynb +++ b/Druckrohrleitung/Main_Programm.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -171,15 +171,15 @@ "for it in range(1,pipe.nt):\n", " pipe.set_boundary_conditions_next_timestep(v_1[it],p_1[it],v_np1[it])\n", " pipe.timestep_characteristic_method()\n", - " lo_00.set_ydata(pipe.p_new)\n", - " lo_01.set_ydata(pipe.v_new)\n", + " lo_00.set_ydata(pipe.p)\n", + " lo_01.set_ydata(pipe.v)\n", "\n", " # store parameters of node 1 (at reservoir)\n", - " pipe.p_1[it] = pipe.p_new[0]\n", - " pipe.v_1[it] = pipe.v_new[0]\n", + " pipe.p_1[it] = pipe.p[0]\n", + " pipe.v_1[it] = pipe.v[0]\n", " # store parameters of node N+1 (at reservoir)\n", - " pipe.p_np1[it] = pipe.p_new[-1]\n", - " pipe.v_np1[it] = pipe.v_new[-1]\n", + " pipe.p_np1[it] = pipe.p[-1]\n", + " pipe.v_np1[it] = pipe.v[-1]\n", " \n", " fig2.suptitle(str(it))\n", " fig2.canvas.draw()\n", @@ -189,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [