From 32e16c08e84e6d91f7a61163a337fc4618c7f3ba Mon Sep 17 00:00:00 2001 From: Brantegger Georg Date: Thu, 9 Feb 2023 10:24:29 +0100 Subject: [PATCH] created KW Lamnitz with loop --- .gitignore | 1 + .../Ausgleichsbecken_class_file.py | 4 +- KW Lamnitz.ipynb | 722 ++++++++++++++++++ KW Lamnitz_Loop.py | 328 ++++++++ KW Vorlage.ipynb | 9 +- 5 files changed, 1058 insertions(+), 6 deletions(-) create mode 100644 KW Lamnitz.ipynb create mode 100644 KW Lamnitz_Loop.py diff --git a/.gitignore b/.gitignore index 655ce1c..d60824e 100644 --- a/.gitignore +++ b/.gitignore @@ -14,5 +14,6 @@ Validation Data/ Druckrohrleitung/Gif Plots Simulation Hammer/ Simulation Arriach/ +Simulation Lamnitz/ log.txt diff --git a/Ausgleichsbecken/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/Ausgleichsbecken_class_file.py index 31af119..703ab68 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/Ausgleichsbecken_class_file.py @@ -225,8 +225,8 @@ class Ausgleichsbecken_class: delta_level = net_flux*timestep/self.area level_new = (self.level+delta_level) # raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop - if level_new < 0.01: - raise Exception('Reservoir ran emtpy') + # if level_new < 0.01: + # raise Exception('Reservoir ran emtpy') # set flag is necessary because update_level() is used to get a halfstep value in the time evoultion if set_flag == True: self.set_level(level_new,display_warning=False) diff --git a/KW Lamnitz.ipynb b/KW Lamnitz.ipynb new file mode 100644 index 0000000..07d153a --- /dev/null +++ b/KW Lamnitz.ipynb @@ -0,0 +1,722 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 0\n", + "import os\n", + "import sys\n", + "from datetime import datetime\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", + "parent = os.path.dirname(current)\n", + "sys.path.append(parent)\n", + "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", + "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", + "from Regler.Regler_class_file import PI_controller_class\n", + "from Turbinen.Turbinen_class_file import Francis_Turbine" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# # code cell 1\n", + "# # for loop creation\n", + "\n", + "# Area_list = np.round(np.arange(40.,90.,5.),1)\n", + "# Kp_list = np.round(np.arange(0.1,3.0,0.2),1)\n", + "# Ti_list = np.round(np.arange(10.,300.,10.),1)\n", + "\n", + "# # # if one wants to use the loop to save 1 specific configuration:\n", + "# # desired_area = 60\n", + "# # desired_KP = 0.7\n", + "# # desired_ti = 200.\n", + "\n", + "# # Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n", + "# # Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n", + "# # Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n", + "\n", + "# for i in range(np.size(Area_list)):\n", + "# for j in range(np.size(Kp_list)):\n", + "# for k in range(np.size(Ti_list)):\n", + "# now = datetime.now()\n", + "# current_time = now.strftime(\"%H:%M:%S\")\n", + "# print(\"Current Time =\", current_time)\n", + "\n", + "# print('i = ',i, '/ ', str(np.size(Area_list)-1))\n", + "# print('j = ',j, '/ ', str(np.size(Kp_list)-1))\n", + "# print('k = ',k, '/ ', str(np.size(Ti_list)-1))\n", + "# print('area = ',Area_list[i])\n", + "# print('K_p = ',Kp_list[j])\n", + "# print('T_i = ',Ti_list[k])\n", + "\n", + "# with open('log.txt','a') as f:\n", + "# f.write(\"Current Time =\" + current_time + '\\n')\n", + "# f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\\n')\n", + "# f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\\n')\n", + "# f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\\n')\n", + "# f.write('area = '+str(Area_list[i])+ '\\n')\n", + "# f.write('K_p = '+str(Kp_list[j])+ '\\n')\n", + "# f.write('T_i = '+str(Ti_list[k])+ '\\n')\n", + "\n", + "# backup if script is used as jupyter notebook\n", + "desired_area = 20\n", + "desired_KP = 1.3\n", + "desired_ti = 200.\n", + "\n", + "Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n", + "Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n", + "Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n", + "i = 0\n", + "j = 0\n", + "k = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 2\n", + "# define constants\n", + "\n", + " # for physics\n", + "g = 9.81 # [m/s²] gravitational acceleration \n", + "rho = 0.9982067*1e3 # [kg/m³] density of water \n", + "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", + "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", + "\n", + " # for KW OL \n", + "OL_T1_Q_nenn = 1.0 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n", + "OL_T1_closingTime = 600. # [s] closing time of turbine\n", + "\n", + " # for KW UL\n", + "UL_T1_Q_nenn = 1.1 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(120.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 60. # [s] closing time of turbine\n", + "\n", + " # for PI controller\n", + "Con_targetLevel = 1.25 # [m] target level of the PI controller\n", + "Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller\n", + "Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term\n", + "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", + "\n", + " # for pipeline\n", + "Pip_length = 2000. # [m] length of pipeline\n", + "Pip_dia = 0.9 # [m] diameter of pipeline\n", + "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", + "Pip_head = 130. # [m] hydraulic head of pipeline without reservoir\n", + "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", + "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", + "Pip_f_D = 0.015 # [-] Darcy friction factor\n", + "Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n", + " # derivatives of the pipeline constants\n", + "Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n", + "Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n", + "Pip_nn = Pip_n_seg+1 # [1] number of nodes\n", + "Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n", + "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir\n", + "\n", + " # for reservoir\n", + "Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir \n", + "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", + "Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", + "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", + "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", + "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", + "\n", + " # for general simulation\n", + "flux_init = OL_T1_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n", + "# OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", + "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", + "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", + "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 3\n", + "# create objects\n", + "\n", + "# influx setting turbines\n", + "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_OL = Kraftwerk_class()\n", + "KW_OL.add_turbine(OL_T1)\n", + "\n", + "KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n", + "\n", + "# KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n", + "# flux_init = KW_OL.get_current_Q()\n", + "\n", + "# Upstream reservoir\n", + "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", + "reservoir.set_steady_state(flux_init,level_init)\n", + "\n", + "# pipeline\n", + "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", + "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", + "\n", + "# downstream turbines\n", + "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_UL = Kraftwerk_class()\n", + "KW_UL.add_turbine(UL_T1)\n", + "\n", + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "\n", + "# level controller\n", + "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", + "level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Turbine has the following attributes: \n", + "----------------------------- \n", + "Type = Francis \n", + "Nominal flux = 1.0 m³/s \n", + "Nominal pressure = 10.197 mWS\n", + "Nominal LA = 100.0 % \n", + "Closing time = 600.0 s \n", + "Current flux = 1.0 m³/s \n", + "Current pipe pressure = 11.217 mWS \n", + "Current LA = 95.35 % \n", + "Simulation timestep = 0.06666666666666667 s \n", + "----------------------------- \n", + "\n", + "None\n", + "The cuboid reservoir has the following attributes: \n", + "----------------------------- \n", + "Base area = 20.0 m² \n", + "Outflux area = 0.636 m² \n", + "Current level = 1.25 m\n", + "Critical level low = 0.75 m \n", + "Critical level high = inf m \n", + "Volume in reservoir = 25.0 m³ \n", + "Current influx = 1.0 m³/s \n", + "Current outflux = 1.0 m³/s \n", + "Current outflux vel = 1.572 m/s \n", + "Current pipe pressure = 1.005 mWS \n", + "Simulation timestep = 0.00101010101010101 s \n", + "Density of liquid = 998.2067 kg/m³ \n", + "----------------------------- \n", + "\n", + "None\n", + "The pipeline has the following attributes: \n", + "----------------------------- \n", + "Length = 2000.0 m \n", + "Diameter = 0.9 m \n", + "Hydraulic head = 130.0 m \n", + "Number of segments = 50 \n", + "Number of nodes = 51 \n", + "Length per segments = 40.0 m \n", + "Pipeline angle = 0.065 rad \n", + "Pipeline angle = 3.727° \n", + "Darcy friction factor = 0.015 \n", + "Density of liquid = 998.2067 kg/m³ \n", + "Pressure wave vel. = 600.0 m/s \n", + "Simulation timestep = 0.06666666666666667 s \n", + "----------------------------- \n", + "Velocity and pressure distribution are vectors and are accessible via the \n", + " get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n", + " See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n", + "None\n", + "Turbine has the following attributes: \n", + "----------------------------- \n", + "Type = Francis \n", + "Nominal flux = 1.1 m³/s \n", + "Nominal pressure = 120.0 mWS\n", + "Nominal LA = 100.0 % \n", + "Closing time = 60.0 s \n", + "Current flux = 1.0 m³/s \n", + "Current pipe pressure = 126.624 mWS \n", + "Current LA = 88.5 % \n", + "Simulation timestep = 0.06666666666666667 s \n", + "----------------------------- \n", + "\n", + "None\n", + "Controller has the following attributes: \n", + "----------------------------- \n", + "Type = PI Controller \n", + "Setpoint = 1.25 \n", + "Deadband = 0.0 \n", + "Proportionality constant = 1.3 \n", + "Integration time = 200.0 [s] \n", + "Current control variable = 0.885 \n", + "Lower limit CV = 0.0 \n", + "Upper limit CV = 1.0 \n", + "Simulation timestep = 0.06666666666666667 [s] \n", + "----------------------------- \n", + "\n", + "None\n" + ] + } + ], + "source": [ + "# code cell 4\n", + "# using the get_info() methods\n", + "\n", + "# print(KW_OL.get_info())\n", + "# print(reservoir.get_info(full=True))\n", + "# print(pipe.get_info())\n", + "# print(KW_UL.get_info())\n", + "# print(level_control.get_info())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- change the influx through the OL HPP by manually setting the guide vane openings\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 5\n", + "# initialization for Timeloop\n", + "\n", + "# OL KW\n", + " # manual input to modulate influx\n", + "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s \n", + "\n", + "\n", + "# creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop\n", + "\n", + "# reservoir\n", + "Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir\n", + "Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n", + "# Outflux from reservoir is stored in Q_boundary_res\n", + "level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep\n", + "level_vec[0] = level_init # storing the initial level in the reservoir\n", + "volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep\n", + "volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n", + "\n", + "# pipeline\n", + "v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep\n", + "v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node\n", + "v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node\n", + "Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep\n", + "Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node\n", + "Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node\n", + "p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep\n", + "p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node\n", + "p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node\n", + "p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n", + "\n", + "v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir\n", + "v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine\n", + "Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir\n", + "Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine\n", + "p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir\n", + "p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine\n", + "\n", + "v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n", + "v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n", + "Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n", + "Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n", + "p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n", + "p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n", + "\n", + "# OL KW\n", + "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "# UL KW\n", + "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n", + "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# # code cell 6\n", + "# # displaying the guide vane openings\n", + "# # for plot in separate window\n", + "# %matplotlib qt5 \n", + "\n", + "# fig0,axs0 = plt.subplots(1,1)\n", + "# axs0.set_title('LA')\n", + "# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n", + "# # axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# # axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", + "# # axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs0.set_ylabel(r'$LA$ [%]')\n", + "# axs0.legend()\n", + "# plt.pause(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# # code cell 7\n", + "# # create the figure in which the evolution of the pipeline will be displayed\n", + "# %matplotlib qt5\n", + "\n", + "# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "# fig1,axs1 = plt.subplots(3,1)\n", + "# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + "# axs1[0].set_title('Pressure distribution in pipeline')\n", + "# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs1[0].set_ylim([-2,Pip_head+30])\n", + "# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", + "# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs1[1].set_ylim([-40,20])\n", + "# axs1[2].set_title('Flux distribution in pipeline')\n", + "# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "# axs1[2].set_ylim([-1,10])\n", + "# # create line objects (lo) whoes values can be updated in time loop to animate the evolution\n", + "# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", + "# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "\n", + "# # axs1[0].autoscale()\n", + "# # axs1[1].autoscale()\n", + "\n", + "# fig1.tight_layout()\n", + "# fig1.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- in line 10 OL_p_pseudo is used" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 8\n", + "# time loop\n", + "# needed for turbine convergence\n", + "convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n", + "\n", + "# loop through time steps of the pipeline\n", + "for it_pipe in range(1,nt+1):\n", + "\n", + " # update OL_KW and the influx into the reservoir\n", + " KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe]])\n", + " KW_OL.set_pressure(OL_p_pseudo)\n", + " Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n", + " reservoir.set_influx(Q_in_vec[it_pipe])\n", + "\n", + "# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n", + " # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n", + " reservoir.set_pressure(p_old[0],display_warning=False)\n", + " reservoir.set_outflux(Q_old[0],display_warning=False)\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", + " for it_res in range(Res_nt):\n", + " reservoir.timestep_reservoir_evolution() \n", + " # save the level and the volume in the reservoir \n", + " level_vec[it_pipe] = reservoir.get_current_level() \n", + " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + "\n", + " # update target value for UL_KW from the level controller\n", + " level_control.update_control_variable(level_vec[it_pipe])\n", + " UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " \n", + " # change the guide vane opening based on the target value and closing time limitation\n", + " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe]])\n", + " # save the actual guide vane openings\n", + " OL_T1_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n", + " UL_T1_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n", + "\n", + " # set boundary condition for the next timestep of the characteristic method\n", + " convergence_parameters[0] = p_old[-2]\n", + " convergence_parameters[1] = v_old[-2]\n", + " convergence_parameters[9] = p_old[-1]\n", + " KW_UL.set_pressure(p_old[-1])\n", + " # use the convergence method to avoid numerical errors\n", + " KW_UL.converge(convergence_parameters)\n", + " # save the first set of boundary conditions\n", + " p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n", + " v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n", + " Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n", + "\n", + " # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine\n", + " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", + " # save the second set of boundary conditions\n", + " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", + " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", + " Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n", + "\n", + " # perform the next timestep via the characteristic method\n", + " # use vectorized method for performance\n", + " pipe.timestep_characteristic_method_vectorized()\n", + "\n", + " # prepare for next loop\n", + " p_old = pipe.get_current_pressure_distribution()\n", + " v_old = pipe.get_current_velocity_distribution()\n", + " Q_old = pipe.get_current_flux_distribution()\n", + "\n", + " # # plot some stuff\n", + " # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " # if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n", + " # lo_0.remove()\n", + " # lo_0min.remove()\n", + " # lo_0max.remove()\n", + " # lo_1.remove()\n", + " # lo_1min.remove()\n", + " # lo_1max.remove()\n", + " # lo_2.remove()\n", + " # lo_2min.remove()\n", + " # lo_2max.remove()\n", + " # # plot new pressure and velocity distribution in the pipeline\n", + " # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + " # fig1.canvas.draw() # force figure output\n", + " # fig1.tight_layout()\n", + " # fig1.show()\n", + " # plt.pause(0.1) " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# # code cell 9\n", + "# # plot some stuff in separate windows\n", + "\n", + "# level_plot_min = 0\n", + "# level_plot_max = 3\n", + "# volume_plot_min = level_plot_min*Res_area_base\n", + "# volume_plot_max = level_plot_max*Res_area_base\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Level and Volume reservoir')\n", + "# axs2.plot(t_vec,level_vec,label='level')\n", + "# axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$h$ [m]')\n", + "# axs2.set_ylim(level_plot_min,level_plot_max)\n", + "# x_twin_00 = axs2.twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('LA')\n", + "# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$LA$ [%]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Fluxes')\n", + "# axs2.plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Min and Max Pressure')\n", + "# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Min and Max Fluxes')\n", + "# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "\n", + "# fig2.tight_layout()\n", + "# plt.show()\n", + "# # plt.close()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- change level_plot_min and _max\n", + "- check that folder for saving figures is present in same directory as this file\n", + "- change name of the saved file in line 54: Vorlage -> ..." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 10\n", + "# code for plotting and safing the figures generated in the loop\n", + "\n", + "level_plot_min = 0\n", + "level_plot_max = 3\n", + "volume_plot_min = level_plot_min*Res_area_base\n", + "volume_plot_max = level_plot_max*Res_area_base\n", + "\n", + "fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n", + "axs3[0,0].set_title('Level and Volume reservoir')\n", + "axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n", + "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n", + "x_twin_00 = axs3[0,0].twinx()\n", + "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "x_twin_00.plot(t_vec,volume_vec)\n", + "x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", + "axs3[0,0].legend()\n", + "\n", + "axs3[0,1].set_title('LA')\n", + "axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "axs3[0,1].legend()\n", + "\n", + "axs3[1,0].set_title('Fluxes')\n", + "axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "axs3[1,0].legend()\n", + "\n", + "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs3[1,1].legend()\n", + "\n", + "fig3.tight_layout()\n", + "plt.show()\n", + "\n", + "# figname = 'Simulation Vorlage\\KW_Vorlage_Fläche_'+str(Res_area_base)+'_Kp_'+str(round(Con_K_p,1))+'_Ti_'+str(Con_T_i)+'.png'\n", + "# fig3.savefig(figname)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/KW Lamnitz_Loop.py b/KW Lamnitz_Loop.py new file mode 100644 index 0000000..f3d5c79 --- /dev/null +++ b/KW Lamnitz_Loop.py @@ -0,0 +1,328 @@ +# code cell 0 +import os +import sys +from datetime import datetime + +import matplotlib.pyplot as plt +import numpy as np + +current = os.path.dirname(os.path.realpath('Main_Programm.ipynb')) +parent = os.path.dirname(current) +sys.path.append(parent) +from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class +from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class +from functions.pressure_conversion import pressure_conversion +from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class +from Regler.Regler_class_file import PI_controller_class +from Turbinen.Turbinen_class_file import Francis_Turbine + +# code cell 1 +# for loop creation + +Area_list = np.round(np.arange(20.,30.,5.),1) +Kp_list = np.round(np.arange(0.7,1.3,0.2),1) +Ti_list = np.round(np.arange(200.,220.,25.),1) + +# # if one wants to use the loop to save 1 specific configuration: +# desired_area = 60 +# desired_KP = 0.7 +# desired_ti = 200. + +# Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1) +# Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1) +# Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1) + +for i in range(np.size(Area_list)): + for j in range(np.size(Kp_list)): + for k in range(np.size(Ti_list)): + now = datetime.now() + current_time = now.strftime("%H:%M:%S") + print("Current Time =", current_time) + + print('i = ',i, '/ ', str(np.size(Area_list)-1)) + print('j = ',j, '/ ', str(np.size(Kp_list)-1)) + print('k = ',k, '/ ', str(np.size(Ti_list)-1)) + print('area = ',Area_list[i]) + print('K_p = ',Kp_list[j]) + print('T_i = ',Ti_list[k]) + + with open('log.txt','a') as f: + f.write("Current Time =" + current_time + '\n') + f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\n') + f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\n') + f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\n') + f.write('area = '+str(Area_list[i])+ '\n') + f.write('K_p = '+str(Kp_list[j])+ '\n') + f.write('T_i = '+str(Ti_list[k])+ '\n') + + + # code cell 2 + # define constants + + # for physics + g = 9.81 # [m/s²] gravitational acceleration + rho = 0.9982067*1e3 # [kg/m³] density of water + pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels + pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels + + # for KW OL + OL_T1_Q_nenn = 1.0 # [m³/s] nominal flux of turbine + OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv + OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding + OL_T1_closingTime = 600. # [s] closing time of turbine + + # for KW UL + UL_T1_Q_nenn = 1.1 # [m³/s] nominal flux of turbine + UL_T1_p_nenn = pressure_conversion(120.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine + UL_T1_closingTime = 60. # [s] closing time of turbine + + # for PI controller + Con_targetLevel = 1.25 # [m] target level of the PI controller + Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller + Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term + Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene + + # for pipeline + Pip_length = 2000. # [m] length of pipeline + Pip_dia = 0.9 # [m] diameter of pipeline + Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline + Pip_head = 130. # [m] hydraulic head of pipeline without reservoir + Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline + Pip_n_seg = 50 # [-] number of pipe segments in discretization + Pip_f_D = 0.015 # [-] Darcy friction factor + Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline + # derivatives of the pipeline constants + Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment + Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics + Pip_nn = Pip_n_seg+1 # [1] number of nodes + Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline + Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir + + # for reservoir + Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir + Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area + Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings + Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings + Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.) + Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline + Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution + + # for general simulation + flux_init = OL_T1_Q_nenn # [m³/s] initial flux through whole system for steady state initialization + #OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW + level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization + simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt) + nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system + t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored + + + # code cell 3 + # create objects + + # influx setting turbines + OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv) + + KW_OL = Kraftwerk_class() + KW_OL.add_turbine(OL_T1) + + KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo) + + # KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo) + # flux_init = KW_OL.get_current_Q() + + # Upstream reservoir + reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho) + reservoir.set_steady_state(flux_init,level_init) + + # pipeline + pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho) + pipe.set_steady_state(flux_init,reservoir.get_current_pressure()) + + # downstream turbines + UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv) + + KW_UL = Kraftwerk_class() + KW_UL.add_turbine(UL_T1) + + KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1]) + + # level controller + level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt) + level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False) + + + # code cell 5 + # initialization for Timeloop + + # OL KW + # manual input to modulate influx + OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening + OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s + OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s + + # creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop + + # reservoir + Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir + Q_in_vec[0] = flux_init # storing the initial influx to the reservoir + # Outflux from reservoir is stored in Q_boundary_res + level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep + level_vec[0] = level_init # storing the initial level in the reservoir + volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep + volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir + + # pipeline + v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep + v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node + v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node + Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep + Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node + Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node + p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep + p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node + p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node + p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node + + v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir + v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine + Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir + Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine + p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir + p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine + + v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir + v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine + Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir + Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine + p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir + p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine + + # OL KW + OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening + OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening + + # UL KW + UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening + UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening + + UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening + UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening + + + # code cell 8 + # time loop + # needed for turbine convergence + convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]] + + # loop through time steps of the pipeline + for it_pipe in range(1,nt+1): + + # update OL_KW and the influx into the reservoir + KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe]]) + KW_OL.set_pressure(OL_p_pseudo) + Q_in_vec[it_pipe] = KW_OL.get_current_Q() + reservoir.set_influx(Q_in_vec[it_pipe]) + + # for each pipeline timestep, execute Res_nt timesteps of the reservoir code + # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method + reservoir.set_pressure(p_old[0],display_warning=False) + reservoir.set_outflux(Q_old[0],display_warning=False) + # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error + for it_res in range(Res_nt): + reservoir.timestep_reservoir_evolution() + # save the level and the volume in the reservoir + level_vec[it_pipe] = reservoir.get_current_level() + volume_vec[it_pipe] = reservoir.get_current_volume() + + # update target value for UL_KW from the level controller + level_control.update_control_variable(level_vec[it_pipe]) + UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() + + # change the guide vane opening based on the target value and closing time limitation + KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe]]) + # save the actual guide vane openings + OL_T1_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs() + UL_T1_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs() + + # set boundary condition for the next timestep of the characteristic method + convergence_parameters[0] = p_old[-2] + convergence_parameters[1] = v_old[-2] + convergence_parameters[9] = p_old[-1] + KW_UL.set_pressure(p_old[-1]) + # use the convergence method to avoid numerical errors + KW_UL.converge(convergence_parameters) + # save the first set of boundary conditions + p_boundary_res[it_pipe] = reservoir.get_current_pressure() + v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q() + Q_boundary_tur[it_pipe] = KW_UL.get_current_Q() + + # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine + pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe]) + # save the second set of boundary conditions + p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1] + v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0] + Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0] + + # perform the next timestep via the characteristic method + # use vectorized method for performance + pipe.timestep_characteristic_method_vectorized() + + # prepare for next loop + p_old = pipe.get_current_pressure_distribution() + v_old = pipe.get_current_velocity_distribution() + Q_old = pipe.get_current_flux_distribution() + + + # code cell 10 + # code for plotting and safing the figures generated in the loop + + level_plot_min = 0 + level_plot_max = 3 + volume_plot_min = level_plot_min*Res_area_base + volume_plot_max = level_plot_max*Res_area_base + + fig3,axs3 = plt.subplots(2,2,figsize=(16,9)) + fig3.suptitle('Fläche = '+str(Res_area_base)+'\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i)) + axs3[0,0].set_title('Level and Volume reservoir') + axs3[0,0].plot(t_vec,level_vec,label='level') + axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r') + axs3[0,0].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[0,0].set_ylabel(r'$h$ [m]') + axs3[0,0].set_ylim(level_plot_min,level_plot_max) + x_twin_00 = axs3[0,0].twinx() + x_twin_00.set_ylabel(r'$V$ [$\mathrm{m}^3$]') + x_twin_00.plot(t_vec,volume_vec) + x_twin_00.set_ylim(volume_plot_min,volume_plot_max) + axs3[0,0].legend() + + axs3[0,1].set_title('LA') + axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b') + axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+') + axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r') + axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+') + axs3[0,1].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[0,1].set_ylabel(r'$LA$ [%]') + axs3[0,1].legend() + + axs3[1,0].set_title('Fluxes') + axs3[1,0].plot(t_vec,Q_in_vec,label='Influx') + axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux') + axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+') + axs3[1,0].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[1,0].set_ylabel(r'$Q$ [$\mathrm{m}^3/\mathrm{s}$]') + axs3[1,0].legend() + + axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine') + axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir') + axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine') + axs3[1,1].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']') + axs3[1,1].legend() + + fig3.tight_layout() + plt.close() + + figname = 'Simulation Lamnitz\KW_Lamnitz_Fläche_'+str(Res_area_base)+'_Kp_'+str(round(Con_K_p,1))+'_Ti_'+str(Con_T_i)+'.png' + fig3.savefig(figname) + + diff --git a/KW Vorlage.ipynb b/KW Vorlage.ipynb index 3be3a9c..594c42a 100644 --- a/KW Vorlage.ipynb +++ b/KW Vorlage.ipynb @@ -636,7 +636,8 @@ "axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", "\n", "fig2.tight_layout()\n", - "plt.show()" + "plt.show()\n", + "# plt.close()\n" ] }, { @@ -715,7 +716,7 @@ ], "metadata": { "kernelspec": { - "display_name": "DT_Slot3", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -729,12 +730,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.16" + "version": "3.8.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "06e42ed9520aaad7103456df165a31ea40da0f41ac9dffb743274e5e314689f3" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } },