compressed validation data from KW Tieferbach

This commit is contained in:
Georg ´Brantegger
2022-09-20 10:08:37 +02:00
parent cec300973a
commit 33ca4dd48e
10 changed files with 4412084 additions and 79 deletions

311771
Validation Data/August_1.csv Normal file

File diff suppressed because it is too large Load Diff

459531
Validation Data/August_2.csv Normal file

File diff suppressed because it is too large Load Diff

459531
Validation Data/August_3.csv Normal file

File diff suppressed because it is too large Load Diff

598191
Validation Data/Juli_1.csv Normal file

File diff suppressed because it is too large Load Diff

611228
Validation Data/Juli_2.csv Normal file

File diff suppressed because it is too large Load Diff

468365
Validation Data/Juli_3.csv Normal file

File diff suppressed because it is too large Load Diff

406527
Validation Data/Juni_1.csv Normal file

File diff suppressed because it is too large Load Diff

454169
Validation Data/Juni_2.csv Normal file

File diff suppressed because it is too large Load Diff

642736
Validation Data/Juni_3.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 57,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -15,7 +15,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"name = 'August_3'"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -37,7 +46,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 60,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -50,8 +59,10 @@
"parameter_old = ''\n", "parameter_old = ''\n",
"value_list = []\n", "value_list = []\n",
"timestamp_list = []\n", "timestamp_list = []\n",
"with open('Juni_1_22.txt') as txt_file:\n", "with open(name+'.txt') as txt_file:\n",
" for line in txt_file:\n", " for line in txt_file:\n",
" if line == \"\":\n",
" break\n",
" parameter_new, value_new, timestamp_new = unpack_line(line)\n", " parameter_new, value_new, timestamp_new = unpack_line(line)\n",
" if parameter_new != parameter_old:\n", " if parameter_new != parameter_old:\n",
" if 'M1' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n", " if 'M1' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n",
@@ -99,34 +110,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c96b7430>]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig1=plt.figure()\n",
"plt.plot(M1_LA_df['M1-LA'])\n",
"fig2=plt.figure()\n",
"plt.plot(M1_Druck_df['M1-Druck'])\n",
"fig3=plt.figure()\n",
"plt.plot(M2_LA_df['M2-LA'])\n",
"fig4=plt.figure()\n",
"plt.plot(M2_Druck_df['M2-Druck'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -136,66 +120,38 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c8733c10>]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig1=plt.figure()\n",
"plt.plot(df['M1-LA'])\n",
"fig2=plt.figure()\n",
"plt.plot(df['M1-Druck'])\n",
"fig3=plt.figure()\n",
"plt.plot(df['M2-LA'])\n",
"fig4=plt.figure()\n",
"plt.plot(df['M2-Druck'])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"t_vec = df.index.to_numpy()\n", "# t_vec = df.index.to_numpy()\n",
"M1_LA = df['M1-LA'].to_numpy() " "# M1_LA = df['M1-LA'].to_numpy() \n",
"# M2_LA = df['M2-LA'].to_numpy() \n",
"# M1_p = df['M1-Druck'].to_numpy() \n",
"# M2_p = df['M2-Druck'].to_numpy() \n",
"# fig1=plt.figure()\n",
"# plt.plot(t_vec,M1_LA)\n",
"# fig2=plt.figure()\n",
"# plt.plot(t_vec,M2_LA)\n",
"# fig3=plt.figure()\n",
"# plt.plot(t_vec,M1_p)\n",
"# fig4=plt.figure()\n",
"# plt.plot(t_vec,M2_p)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 63,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c8563340>]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"fig5=plt.figure()\n", "df.to_csv(name+'.csv')"
"plt.plot(t_vec,M1_LA)"
] ]
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "display_name": "Python 3.8.13 ('DT_Slot_3')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -214,7 +170,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
} }
} }
}, },