small changes for consistency, comments and a small fix in the convergence method of the turbine
This commit is contained in:
@@ -34,36 +34,32 @@
|
||||
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for Turbine\n",
|
||||
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
||||
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
||||
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
||||
"\n",
|
||||
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
||||
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
||||
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
||||
"\n",
|
||||
" # for PI controller\n",
|
||||
"Con_targetLevel = 8. # [m]\n",
|
||||
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
|
||||
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
||||
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
||||
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for pipeline\n",
|
||||
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
||||
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
||||
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
|
||||
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
|
||||
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
|
||||
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
|
||||
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
|
||||
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
|
||||
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
||||
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
||||
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
|
||||
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
|
||||
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
|
||||
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
|
||||
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
|
||||
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
|
||||
" # derivatives of the pipeline constants\n",
|
||||
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
|
||||
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
|
||||
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
|
||||
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
||||
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
||||
"\n",
|
||||
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
|
||||
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
|
||||
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
|
||||
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
||||
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
||||
"\n",
|
||||
" # for reservoir\n",
|
||||
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
|
||||
@@ -75,38 +71,68 @@
|
||||
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
|
||||
"\n",
|
||||
" # for general simulation\n",
|
||||
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
|
||||
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
|
||||
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
|
||||
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
|
||||
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
|
||||
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
|
||||
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
|
||||
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n",
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# create objects\n",
|
||||
"\n",
|
||||
"# Upstream reservoir\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir.set_steady_state(flux_init,level_init)\n",
|
||||
"\n",
|
||||
"# pipeline\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reservoir.get_info(full=True)\n",
|
||||
"pipe.get_info(full=True)"
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
|
||||
"pipe.get_info()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -169,7 +195,46 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The cuboid reservoir has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Base area = 74.0 m² \n",
|
||||
"Outflux area = 0.636 m² \n",
|
||||
"Current level = 8.0 m\n",
|
||||
"Critical level low = 0.0 m \n",
|
||||
"Critical level high = inf m \n",
|
||||
"Volume in reservoir = 592.0 m³ \n",
|
||||
"Current influx = 0.773 m³/s \n",
|
||||
"Current outflux = 0.773 m³/s \n",
|
||||
"Current outflux vel = 1.215 m/s \n",
|
||||
"Current pipe pressure = 7.854 mWS \n",
|
||||
"Simulation timestep = 0.001013 s \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"----------------------------- \n",
|
||||
"\n",
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for it_pipe in range(1,nt+1):\n",
|
||||
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||
@@ -213,12 +278,12 @@
|
||||
" plt.pause(0.000001)\n",
|
||||
"\n",
|
||||
"reservoir.get_info(full=True)\n",
|
||||
"pipe.get_info(full=True)"
|
||||
"pipe.get_info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
||||
Reference in New Issue
Block a user