small changes for consistency, comments and a small fix in the convergence method of the turbine

This commit is contained in:
Brantegger Georg
2022-08-08 14:49:22 +02:00
parent 5a790d5ca5
commit 38c809ef49
10 changed files with 496 additions and 304 deletions

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -30,12 +30,10 @@
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
@@ -43,23 +41,21 @@
"Con_T_i = 1000. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
@@ -71,28 +67,28 @@
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
@@ -109,7 +105,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -158,7 +154,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -176,8 +172,8 @@
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
@@ -191,7 +187,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -247,7 +243,6 @@
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_p.remove()\n",
@@ -257,9 +252,9 @@
" lo_qmin.remove()\n",
" lo_qmax.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
@@ -272,7 +267,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -316,8 +311,8 @@
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",