small changes for consistency, comments and a small fix in the convergence method of the turbine

This commit is contained in:
Brantegger Georg
2022-08-08 14:49:22 +02:00
parent 5a790d5ca5
commit 38c809ef49
10 changed files with 496 additions and 304 deletions

View File

@@ -27,14 +27,14 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
class Ausgleichsbecken_class:
# units
# make sure that units and print units are the same
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm'
pressure_unit = 'Pa'
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
volume_unit = r'$\mathrm{m}^3$'
@@ -44,6 +44,7 @@ class Ausgleichsbecken_class:
density_unit_disp = 'kg/m³'
flux_unit_disp = 'm³/s'
level_unit_disp = 'm'
# pressure_unit_disp will be set within the __init__() method
time_unit_disp = 's'
velocity_unit_disp = 'm/s'
volume_unit_disp = ''
@@ -53,26 +54,37 @@ class Ausgleichsbecken_class:
# init
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
"""
Creates a reservoir with given attributes in this order: \n
Base Area [m²] \n
Outflux Area [m²] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
Minimal level [m] \n
Maximal level [m] \n
Density of the liquid [kg/m³] \n
"""
#set initial attributes
self.area = area # base area of the cuboid reservoir
self.area_out = area_outflux # area of the outlet towards the pipeline
self.density = rho # density of the liquid in the system
self.level_min = level_min # lowest allowed water level
self.level_max = level_max # highest allowed water level
self.level_min = level_min # lowest allowed water level - warning yet to be implemented
self.level_max = level_max # highest allowed water level - warning yet to be implemented
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
self.timestep = timestep # timestep in the time evolution method
# initialize for get_info
self.influx = "--"
self.outflux = "--"
self.level = "--"
self.pressure = "--"
self.volume = "--"
# initialize for get_info() (if get_info() gets called before set_steady_state() is executed)
self.influx = -np.inf
self.outflux = -np.inf
self.level = -np.inf
self.pressure = -np.inf
self.volume = -np.inf
# setter
# setter - set attributes
def set_initial_level(self,initial_level):
# sets the initial level in the reservoir and should only be called during initialization
if self.level == '--':
if self.level == -np.inf:
self.level = initial_level
self.update_volume(set_flag=True)
else:
@@ -80,7 +92,7 @@ class Ausgleichsbecken_class:
def set_initial_pressure(self,initial_pressure):
# sets the initial static pressure present at the outlet of the reservoir and should only be called during initialization
if self.pressure == '--':
if self.pressure == -np.inf:
self.pressure = initial_pressure
else:
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.')
@@ -96,7 +108,7 @@ class Ausgleichsbecken_class:
if display_warning == True:
print('You are setting the outflux from the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the timestep_reservoir_evolution() method instead.')
Refer to the timestep_reservoir_evolution() or set_steady_state() method instead.')
self.outflux = outflux
def set_level(self,level,display_warning=True):
@@ -104,7 +116,7 @@ class Ausgleichsbecken_class:
if display_warning == True:
print('You are setting the level of the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the update_level() method instead.')
Refer to the update_level() or set_steady_state() method instead.')
self.level = level
def set_pressure(self,pressure,display_warning=True):
@@ -112,48 +124,53 @@ class Ausgleichsbecken_class:
if display_warning == True:
print('You are setting the pressure below the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the update_pressure() method instead.')
Refer to the update_pressure() or set_steady_state() method instead.')
self.pressure = pressure
def set_volume(self,volume,display_warning=True):
# sets volume in reservoir
if display_warning == True:
print('You are setting the volume in the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the .update_volume() or set_initial_level() method instead.')
Refer to the .update_volume() or set_initial_level() or set_steady_state() method instead.')
self.volume = volume
def set_steady_state(self,ss_influx,ss_level):
# set the steady state (ss) condition in which the net flux is zero
# set the reservoir to steady state (ss) condition in which the net flux is zero
# set pressure acting on the outflux area so that the level stays constant
ss_outflux = ss_influx
ss_influx_vel = abs(ss_influx/self.area)
ss_outflux_vel = abs(ss_outflux/self.area_out)
# see confluence doc for explaination on how to arrive at the ss pressure formula
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
# use setter methods to set the attributes to their steady state values
self.set_influx(ss_influx)
self.set_initial_level(ss_level)
self.set_initial_pressure(ss_pressure)
self.set_outflux(ss_outflux,display_warning=False)
# getter
# getter - return attributes
def get_info(self, full = False):
# prints out the info on the current state of the reservoir
new_line = '\n'
if self.pressure != np.inf:
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
if self.outflux != np.inf:
outflux_vel = self.outflux/self.area_out
if full == True:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Base area = {self.area:<10} {self.area_unit_disp} {new_line}"
f"Outflux area = {round(self.area_out,3):<10} {self.area_out_unit_disp} {new_line}"
f"Outflux area = {round(self.area_out,3):<10} {self.area_outflux_unit_disp} {new_line}"
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
f"Critical level low = {self.level_min:<10} {self.level_unit_disp} {new_line}"
f"Critical level high = {self.level_max:<10} {self.level_unit_disp} {new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_disp} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"Simulation timestep = {self.timestep:<10} {self.time_unit_disp} {new_line}"
@@ -165,8 +182,8 @@ class Ausgleichsbecken_class:
f"----------------------------- {new_line}"
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
f"Current volume = {self.volume:<10} {self.volume_unit_disp} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"----------------------------- {new_line}")
@@ -188,22 +205,26 @@ class Ausgleichsbecken_class:
def get_current_volume(self):
return self.volume
# update methods
# update methods - update attributes based on some parameter
def update_level(self,timestep,set_flag=False):
# update level based on net flux and timestep by calculating the volume change in
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
net_flux = self.influx-self.outflux
delta_level = net_flux*timestep/self.area
level_new = (self.level+delta_level)
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
if set_flag == True:
self.set_level(level_new,display_warning=False)
elif set_flag == False:
return level_new
def update_pressure(self,set_flag=False):
# update pressure based on level and flux velocities
# see confluence doc for explaination
influx_vel = abs(self.influx/self.area)
outflux_vel = abs(self.outflux/self.area_out)
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
# set flag for consistency with update_level()
if set_flag ==True:
self.set_pressure(p_new,display_warning=False)
elif set_flag == False:
@@ -211,6 +232,7 @@ class Ausgleichsbecken_class:
def update_volume(self,set_flag=False):
volume_new = self.level*self.area
# set flag for consistency with update_level()
if set_flag == True:
self.set_volume(volume_new,display_warning=False)
elif set_flag == False:
@@ -218,7 +240,9 @@ class Ausgleichsbecken_class:
#methods
def timestep_reservoir_evolution(self):
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
# get some variables
dt = self.timestep
rho = self.density
g = self.g
@@ -229,7 +253,8 @@ class Ausgleichsbecken_class:
h_hs = self.update_level(dt/2)
p = self.pressure
p_hs = self.pressure + rho*g*(h_hs-h)
# explicit 4 step Runge Kutta
# perform explicit 4 step Runge Kutta
Y1 = yn
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
@@ -237,6 +262,7 @@ class Ausgleichsbecken_class:
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
# set/update the attributes to their new values
self.set_outflux(ynp1*A_a,display_warning=False)
self.update_level(dt,set_flag=True)
self.update_volume(set_flag=True)

File diff suppressed because one or more lines are too long

View File

@@ -10,13 +10,15 @@ from functions.pressure_conversion import pressure_conversion
class Druckrohrleitung_class:
# units
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
angle_unit = 'rad'
area_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
length_unit = 'm'
pressure_unit = 'Pa'
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
volume_unit = r'$\mathrm{m}^3$'
@@ -27,33 +29,54 @@ class Druckrohrleitung_class:
density_unit_disp = 'kg/m³'
flux_unit_disp = 'm³/s'
length_unit_disp = 'm'
# pressure_unit_disp will be set within the __init__() method
time_unit_disp = 's'
velocity_unit_disp = 'm/s' # for flux and pressure propagation
volume_unit_disp = ''
g = 9.81
g = 9.81 # m/s² gravitational acceleration
# init
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
"""
Creates a reservoir with given attributes in this order: \n
Pipeline length [m] \n
Pipeline diameter [m] \n
Pipeline head [m] \n
Number of pipeline segments [1] \n
Darcy friction factor [1] \n
Pressure wave velocity [m/s] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
Density of the liquid [kg/m³] \n
"""
self.length = total_length # total length of the pipeline
self.dia = diameter # diameter of the pipeline
self.head = pipeline_head # hydraulic head of the pipeline
self.n_seg = number_segments # number of segments for the method of characteristics
self.angle = pipeline_angle # angle of the pipeline
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
self.c = pw_vel
self.c = pw_vel # propagation velocity of pressure wave
self.dt = timestep
self.density = rho # density of the liquid in the pipeline
self.A = (diameter/2)**2*np.pi
# derivatives of input attributes
self.angle = np.arcsin(self.head/self.length) # angle of the pipeline
self.A = (diameter/2)**2*np.pi # crossectional area of the pipeline
self.dx = total_length/number_segments # length of each segment
self.x_vec = np.arange(0,(number_segments+1),1)*self.dx # vector giving the distance from each node to the start of the pipeline
self.h_vec = np.arange(0,(number_segments+1),1)*self.head/self.n_seg # vector giving the height difference from each node to the start of the pipeline
self.pressure_unit_disp = pressure_unit_disp
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
# setter
def set_initial_pressure(self,pressure):
# setter - set attributes
def set_initial_pressure(self,pressure,display_warning=True):
# initialize the pressure distribution in the pipeline
if display_warning == True:
print('You are setting the pressure distribution in the pipeline manually. \n \
This is not an intended use of this method. \n \
Refer to the set_steady_state() method instead.')
# make sure the vector has the right size
if np.size(pressure) == 1:
p0 = np.full_like(self.x_vec,pressure)
elif np.size(pressure) == np.size(self.x_vec):
@@ -64,11 +87,18 @@ class Druckrohrleitung_class:
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
self.p_old = p0.copy()
self.p = p0.copy()
# initialize the vectors in which the minimal and maximal value of the pressure at each node are stores
self.p_min = p0.copy()
self.p_max = p0.copy()
def set_initial_flow_velocity(self,velocity):
def set_initial_flow_velocity(self,velocity, display_warning=True):
# initialize the velocity distribution in the pipeline
if display_warning == True:
print('You are setting the velocity distribution in the pipeline manually. \n \
This is not an intended use of this method. \n \
Refer to the set_steady_state() method instead.')
# make sure the vector has the right size
if np.size(velocity) == 1:
v0 = np.full_like(self.x_vec,velocity)
elif np.size(velocity) == np.size(self.x_vec):
@@ -79,6 +109,7 @@ class Druckrohrleitung_class:
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
self.v_old = v0.copy()
self.v = v0.copy()
# initialize the vectors in which the minimal and maximal value of the velocity at each node are stores
self.v_min = v0.copy()
self.v_max = v0.copy()
@@ -114,21 +145,19 @@ class Druckrohrleitung_class:
self.p[0] = p_boundary_res
self.p[-1] = p_boundary_tur
def set_steady_state(self,ss_flux,ss_level_reservoir,area_reservoir,x_vec,h_vec):
def set_steady_state(self,ss_flux,ss_pressure_res):
# set the pressure and velocity distributions, that allow a constant flow of water from the (steady-state) reservoir to the (steady-state) turbine
# the flow velocity is given by the constant flow through the pipe
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
ss_v_in_res = abs(ss_flux/area_reservoir)
ss_v_out_res = abs(ss_flux/self.A)
ss_pressure_res = self.density*self.g*(ss_level_reservoir)+self.density*ss_v_out_res*(ss_v_in_res-ss_v_out_res)
ss_pressure = ss_pressure_res+(self.density*self.g*h_vec)-(self.f_D*x_vec/self.dia*self.density/2*ss_v0**2)
ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2)
self.set_initial_flow_velocity(ss_v0)
self.set_initial_pressure(ss_pressure)
# set the initial conditions
self.set_initial_flow_velocity(ss_v0,display_warning=False)
self.set_initial_pressure(ss_pressure,display_warning=False)
# getter
# getter - return attributes
def get_info(self):
new_line = '\n'
angle_deg = round(self.angle/np.pi*180,3)
@@ -139,6 +168,7 @@ class Druckrohrleitung_class:
f"----------------------------- {new_line}"
f"Length = {self.length:<10} {self.length_unit_disp} {new_line}"
f"Diameter = {self.dia:<10} {self.length_unit_disp} {new_line}"
f"Hydraulic head = {self.head:<10} {self.length_unit_disp} {new_line}"
f"Number of segments = {self.n_seg:<10} {new_line}"
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
f"Length per segments = {self.dx:<10} {self.length_unit_disp} {new_line}"
@@ -148,17 +178,16 @@ class Druckrohrleitung_class:
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
f"Number of timesteps = {self.nt:<10} {new_line}"
f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_disp} {new_line}"
f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
print(print_str)
def get_current_pressure_distribution(self,disp=False):
if disp == True:
def get_current_pressure_distribution(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
elif disp == False:
elif disp_flag == False: # stay in Pa
return self.p
def get_current_velocity_distribution(self):
@@ -167,16 +196,16 @@ class Druckrohrleitung_class:
def get_current_flux_distribution(self):
return self.v*self.A
def get_lowest_pressure_per_node(self,disp=False):
if disp == True:
def get_lowest_pressure_per_node(self,disp_flag=False):
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
elif disp == False:
elif disp_flag == False: # stay in Pa
return self.p_min
def get_highest_pressure_per_node(self,disp=False):
if disp == True:
def get_highest_pressure_per_node(self,disp_flag=False):
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
elif disp == False:
elif disp_flag == False: # stay in Pa
return self.p_max
def get_lowest_velocity_per_node(self):
@@ -196,12 +225,13 @@ class Druckrohrleitung_class:
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
# constants for cleaner formula
nn = self.n_seg+1 # number of nodes
rho = self.density # density of liquid
c = self.c # pressure propagation velocity
f_D = self.f_D # Darcy friction coefficient
dt = self.dt # timestep
D = self.dia # pipeline diametet
D = self.dia # pipeline diameter
g = self.g # graviational acceleration
alpha = self.angle # pipeline angle

View File

@@ -34,20 +34,17 @@
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
@@ -64,7 +61,6 @@
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
@@ -86,27 +82,57 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
]
}
],
"source": [
"# create objects\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"reservoir.get_info(full=True)\n",
"pipe.get_info(full=True)"
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"pipe.get_info()\n"
]
},
{
@@ -169,7 +195,46 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The cuboid reservoir has the following attributes: \n",
"----------------------------- \n",
"Base area = 74.0 m² \n",
"Outflux area = 0.636 m² \n",
"Current level = 8.0 m\n",
"Critical level low = 0.0 m \n",
"Critical level high = inf m \n",
"Volume in reservoir = 592.0 m³ \n",
"Current influx = 0.773 m³/s \n",
"Current outflux = 0.773 m³/s \n",
"Current outflux vel = 1.215 m/s \n",
"Current pipe pressure = 7.854 mWS \n",
"Simulation timestep = 0.001013 s \n",
"Density of liquid = 1000.0 kg/m³ \n",
"----------------------------- \n",
"\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
]
}
],
"source": [
"for it_pipe in range(1,nt+1):\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
@@ -213,12 +278,12 @@
" plt.pause(0.000001)\n",
"\n",
"reservoir.get_info(full=True)\n",
"pipe.get_info(full=True)"
"pipe.get_info()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -85,7 +85,7 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -93,7 +93,7 @@
"offset_pressure = pressure_conversion(Pip_head,'mws',pUnit_calc)\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# downstream turbine\n",
@@ -108,7 +108,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -124,7 +124,7 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 5,
"metadata": {},
"outputs": [
{
@@ -181,7 +181,7 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [

View File

@@ -1,6 +1,7 @@
import numpy as np
#based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation
# performance parameters for controllers
def trap_int(vec,timestep):
# numerical integration via the trapeziod rule to calculate the performance parameters
l = np.size(vec)
@@ -41,6 +42,7 @@ def ITAE_fun(error_history,timestep):
itae = trap_int(np.abs(e),dt)
return itae
# P controller
class P_controller_class:
# def __init__(self,setpoint,proportionality_constant):
# self.SP = setpoint
@@ -72,14 +74,14 @@ class P_controller_class:
def __init__(self):
pass
# PI controller
class PI_controller_class:
# init
def __init__(self,setpoint,deadband,proportionality_constant,Ti,timestep,lower_limit=0.,upper_limit=1.):
self.SP = setpoint
self.db = deadband
self.Kp = proportionality_constant
self.Ti = Ti # integration time
self.Ti = Ti # ~integration time
self.dt = timestep
# use a list to be able to append more easily - will get converted to np.array when needed
self.error_history = [0]
@@ -88,15 +90,13 @@ class PI_controller_class:
self.cv_upper_limit = upper_limit # limits for the controll variable
# setter
def set_setpoint(self,setpoint):
self.SP = setpoint
def set_control_variable(self,control_variable, display_warning=True):
if display_warning == True:
print('WARNING! You are setting the control variable of the PI controller manually \
and are not using the .update_controll_variable() method')
print('WARNING! You are setting the control variable of the PI controller manually! \
Consider using the .update_controll_variable() method instead.')
self.control_variable = control_variable
# getter
@@ -167,14 +167,13 @@ class PI_controller_class:
# only if that is the case, change control variable
if abs(self.error) > self.db:
new_control = cv+Kp*(e0-e1)+dt/Ti*e0
else:
new_control = cv
# ensure that the controll variable stays within the predefined limits
if new_control < self.cv_lower_limit:
new_control = self.cv_lower_limit
if new_control > self.cv_upper_limit:
new_control = self.cv_upper_limit
else:
new_control = cv
# set the control variable attribute
self.set_control_variable(new_control,display_warning=False)

View File

@@ -12,7 +12,7 @@ from functions.pressure_conversion import pressure_conversion
class Francis_Turbine:
# units
# make sure that units and print units are the same
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
@@ -33,6 +33,15 @@ class Francis_Turbine:
# init
def __init__(self,Q_nenn,p_nenn,t_closing,timestep,pressure_unit_disp):
"""
Creates a turbine with given attributes in this order: \n
Nominal flux [m³/s] \n
Nominal pressure [Pa] \n
Closing time [s] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
"""
self.Q_n = Q_nenn # nominal flux
self.p_n = p_nenn # nominal pressure
self.LA_n = 1. # 100% # nominal Leitapparatöffnung
@@ -42,21 +51,21 @@ class Francis_Turbine:
self.pressure_unit_disp = pressure_unit_disp
# initialize for get_info() - parameters will be converted to display -1 if not overwritten
self.p = pressure_conversion(-1,self.pressure_unit_disp,self.pressure_unit)
self.Q = -1.
self.LA = -0.01
# initialize for get_info()
self.p = -np.inf
self.Q = -np.inf
self.LA = -np.inf
# setter
# setter - set attributes
def set_LA(self,LA,display_warning=True):
# set Leitapparatöffnung
self.LA = LA
# warn user, that the .set_LA() method should not be used ot set LA manually
if display_warning == True:
print('You are setting the guide vane opening of the turbine manually. \n \
This is not an intended use of this method. \n \
Refer to the .update_LA() method instead.')
# set Leitapparatöffnung
self.LA = LA
def set_pressure(self,pressure):
# set pressure in front of the turbine
@@ -70,7 +79,7 @@ class Francis_Turbine:
raise Exception('LA out of range [0;1]')
self.set_LA(ss_LA,display_warning=False)
#getter
#getter - get attributes
def get_current_Q(self):
# return the flux through the turbine, based on the current pressure in front
# of the turbine and the Leitapparatöffnung
@@ -83,8 +92,11 @@ class Francis_Turbine:
def get_current_LA(self):
return self.LA
def get_current_pressure(self):
def get_current_pressure(self,disp_flag=True):
if disp_flag == True:
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
else:
return self.p
def get_info(self, full = False):
new_line = '\n'
@@ -135,7 +147,9 @@ class Francis_Turbine:
# methods
def converge(self,convergence_parameters):
# small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the
# new pressure from the forward characteristic are not compatible.
# new pressure from the forward characteristic are not perfectly compatible.
# Therefore, iterate the flux and the pressure so long, until they converge
eps = 1e-12 # convergence criterion: iteration change < eps
iteration_change = 1. # change in Q from one iteration to the next
i = 0 # safety variable. break loop if it exceeds 1e6 iterations
@@ -150,20 +164,18 @@ class Francis_Turbine:
rho = convergence_parameters[7] # density of the liquid
dt = convergence_parameters[8] # timestep of the characteristic method
p_old = self.get_current_pressure()
Q_old = self.get_current_Q()
v_old = Q_old/area_pipe
while iteration_change > eps:
self.set_pressure(p_old)
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
self.set_pressure(p_new)
Q_new = self.get_current_Q()
v_new = Q_new/area_pipe
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
iteration_change = abs(Q_old-Q_new)
Q_old = Q_new.copy()
p_old = p_new.copy()
v_old = v_new.copy()
i = i+1
if i == 1e6:

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -35,20 +35,17 @@
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
@@ -65,7 +62,6 @@
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
@@ -78,14 +74,14 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -96,8 +92,8 @@
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
@@ -114,7 +110,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -158,7 +154,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -176,8 +172,8 @@
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
@@ -191,7 +187,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -247,7 +243,6 @@
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_p.remove()\n",
@@ -257,9 +252,9 @@
" lo_qmin.remove()\n",
" lo_qmax.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
@@ -272,7 +267,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -316,8 +311,8 @@
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
@@ -328,13 +323,6 @@
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"# axs2[0,1].legend()\n",
"# axs2[1,0].legend()\n",
"# axs2[1,1].legend()\n",
"# # axs2[2,0].legend()\n",
"# # axs2[2,1].legend()\n",
"\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -30,20 +30,17 @@
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 1000. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
@@ -60,7 +57,6 @@
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
@@ -73,26 +69,26 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
@@ -109,7 +105,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -158,7 +154,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -176,8 +172,8 @@
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
@@ -191,7 +187,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -247,7 +243,6 @@
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_p.remove()\n",
@@ -257,9 +252,9 @@
" lo_qmin.remove()\n",
" lo_qmax.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
@@ -272,7 +267,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -316,8 +311,8 @@
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",

View File

@@ -27,8 +27,6 @@ def pa_to_torr(p):
def pa_to_atm(p):
return p*1/(101.325*1e3)
# converstion function
def pa_to_psi(p):
return p/6894.8