small changes for consistency, comments and a small fix in the convergence method of the turbine
This commit is contained in:
@@ -27,14 +27,14 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
|
||||
|
||||
class Ausgleichsbecken_class:
|
||||
# units
|
||||
# make sure that units and print units are the same
|
||||
# make sure that units and display units are the same
|
||||
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
level_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
@@ -44,6 +44,7 @@ class Ausgleichsbecken_class:
|
||||
density_unit_disp = 'kg/m³'
|
||||
flux_unit_disp = 'm³/s'
|
||||
level_unit_disp = 'm'
|
||||
# pressure_unit_disp will be set within the __init__() method
|
||||
time_unit_disp = 's'
|
||||
velocity_unit_disp = 'm/s'
|
||||
volume_unit_disp = 'm³'
|
||||
@@ -53,26 +54,37 @@ class Ausgleichsbecken_class:
|
||||
|
||||
# init
|
||||
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
|
||||
"""
|
||||
Creates a reservoir with given attributes in this order: \n
|
||||
Base Area [m²] \n
|
||||
Outflux Area [m²] \n
|
||||
Simulation timestep [s] \n
|
||||
Pressure unit for displaying [string] \n
|
||||
Minimal level [m] \n
|
||||
Maximal level [m] \n
|
||||
Density of the liquid [kg/m³] \n
|
||||
"""
|
||||
#set initial attributes
|
||||
self.area = area # base area of the cuboid reservoir
|
||||
self.area_out = area_outflux # area of the outlet towards the pipeline
|
||||
self.density = rho # density of the liquid in the system
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.level_min = level_min # lowest allowed water level - warning yet to be implemented
|
||||
self.level_max = level_max # highest allowed water level - warning yet to be implemented
|
||||
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
|
||||
self.timestep = timestep # timestep in the time evolution method
|
||||
|
||||
# initialize for get_info
|
||||
self.influx = "--"
|
||||
self.outflux = "--"
|
||||
self.level = "--"
|
||||
self.pressure = "--"
|
||||
self.volume = "--"
|
||||
# initialize for get_info() (if get_info() gets called before set_steady_state() is executed)
|
||||
self.influx = -np.inf
|
||||
self.outflux = -np.inf
|
||||
self.level = -np.inf
|
||||
self.pressure = -np.inf
|
||||
self.volume = -np.inf
|
||||
|
||||
|
||||
# setter
|
||||
# setter - set attributes
|
||||
def set_initial_level(self,initial_level):
|
||||
# sets the initial level in the reservoir and should only be called during initialization
|
||||
if self.level == '--':
|
||||
if self.level == -np.inf:
|
||||
self.level = initial_level
|
||||
self.update_volume(set_flag=True)
|
||||
else:
|
||||
@@ -80,7 +92,7 @@ class Ausgleichsbecken_class:
|
||||
|
||||
def set_initial_pressure(self,initial_pressure):
|
||||
# sets the initial static pressure present at the outlet of the reservoir and should only be called during initialization
|
||||
if self.pressure == '--':
|
||||
if self.pressure == -np.inf:
|
||||
self.pressure = initial_pressure
|
||||
else:
|
||||
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.')
|
||||
@@ -96,7 +108,7 @@ class Ausgleichsbecken_class:
|
||||
if display_warning == True:
|
||||
print('You are setting the outflux from the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the timestep_reservoir_evolution() method instead.')
|
||||
Refer to the timestep_reservoir_evolution() or set_steady_state() method instead.')
|
||||
self.outflux = outflux
|
||||
|
||||
def set_level(self,level,display_warning=True):
|
||||
@@ -104,7 +116,7 @@ class Ausgleichsbecken_class:
|
||||
if display_warning == True:
|
||||
print('You are setting the level of the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the update_level() method instead.')
|
||||
Refer to the update_level() or set_steady_state() method instead.')
|
||||
self.level = level
|
||||
|
||||
def set_pressure(self,pressure,display_warning=True):
|
||||
@@ -112,48 +124,53 @@ class Ausgleichsbecken_class:
|
||||
if display_warning == True:
|
||||
print('You are setting the pressure below the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the update_pressure() method instead.')
|
||||
Refer to the update_pressure() or set_steady_state() method instead.')
|
||||
self.pressure = pressure
|
||||
|
||||
def set_volume(self,volume,display_warning=True):
|
||||
# sets volume in reservoir
|
||||
if display_warning == True:
|
||||
print('You are setting the volume in the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the .update_volume() or set_initial_level() method instead.')
|
||||
Refer to the .update_volume() or set_initial_level() or set_steady_state() method instead.')
|
||||
self.volume = volume
|
||||
|
||||
def set_steady_state(self,ss_influx,ss_level):
|
||||
# set the steady state (ss) condition in which the net flux is zero
|
||||
# set the reservoir to steady state (ss) condition in which the net flux is zero
|
||||
# set pressure acting on the outflux area so that the level stays constant
|
||||
ss_outflux = ss_influx
|
||||
ss_influx_vel = abs(ss_influx/self.area)
|
||||
ss_outflux_vel = abs(ss_outflux/self.area_out)
|
||||
# see confluence doc for explaination on how to arrive at the ss pressure formula
|
||||
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
|
||||
|
||||
# use setter methods to set the attributes to their steady state values
|
||||
self.set_influx(ss_influx)
|
||||
self.set_initial_level(ss_level)
|
||||
self.set_initial_pressure(ss_pressure)
|
||||
self.set_outflux(ss_outflux,display_warning=False)
|
||||
|
||||
# getter
|
||||
# getter - return attributes
|
||||
def get_info(self, full = False):
|
||||
# prints out the info on the current state of the reservoir
|
||||
new_line = '\n'
|
||||
if self.pressure != np.inf:
|
||||
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
|
||||
if self.outflux != np.inf:
|
||||
outflux_vel = self.outflux/self.area_out
|
||||
|
||||
|
||||
if full == True:
|
||||
# :<10 pads the self.value to be 10 characters wide
|
||||
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
|
||||
f"----------------------------- {new_line}"
|
||||
f"Base area = {self.area:<10} {self.area_unit_disp} {new_line}"
|
||||
f"Outflux area = {round(self.area_out,3):<10} {self.area_out_unit_disp} {new_line}"
|
||||
f"Outflux area = {round(self.area_out,3):<10} {self.area_outflux_unit_disp} {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
||||
f"Critical level low = {self.level_min:<10} {self.level_unit_disp} {new_line}"
|
||||
f"Critical level high = {self.level_max:<10} {self.level_unit_disp} {new_line}"
|
||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_disp} {new_line}"
|
||||
@@ -165,8 +182,8 @@ class Ausgleichsbecken_class:
|
||||
f"----------------------------- {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
||||
f"Current volume = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
||||
f"----------------------------- {new_line}")
|
||||
@@ -188,22 +205,26 @@ class Ausgleichsbecken_class:
|
||||
def get_current_volume(self):
|
||||
return self.volume
|
||||
|
||||
# update methods
|
||||
# update methods - update attributes based on some parameter
|
||||
def update_level(self,timestep,set_flag=False):
|
||||
# update level based on net flux and timestep by calculating the volume change in
|
||||
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
||||
net_flux = self.influx-self.outflux
|
||||
delta_level = net_flux*timestep/self.area
|
||||
level_new = (self.level+delta_level)
|
||||
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
|
||||
if set_flag == True:
|
||||
self.set_level(level_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
return level_new
|
||||
|
||||
def update_pressure(self,set_flag=False):
|
||||
# update pressure based on level and flux velocities
|
||||
# see confluence doc for explaination
|
||||
influx_vel = abs(self.influx/self.area)
|
||||
outflux_vel = abs(self.outflux/self.area_out)
|
||||
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
|
||||
# set flag for consistency with update_level()
|
||||
if set_flag ==True:
|
||||
self.set_pressure(p_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
@@ -211,6 +232,7 @@ class Ausgleichsbecken_class:
|
||||
|
||||
def update_volume(self,set_flag=False):
|
||||
volume_new = self.level*self.area
|
||||
# set flag for consistency with update_level()
|
||||
if set_flag == True:
|
||||
self.set_volume(volume_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
@@ -218,7 +240,9 @@ class Ausgleichsbecken_class:
|
||||
|
||||
#methods
|
||||
def timestep_reservoir_evolution(self):
|
||||
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
||||
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
|
||||
|
||||
# get some variables
|
||||
dt = self.timestep
|
||||
rho = self.density
|
||||
g = self.g
|
||||
@@ -229,7 +253,8 @@ class Ausgleichsbecken_class:
|
||||
h_hs = self.update_level(dt/2)
|
||||
p = self.pressure
|
||||
p_hs = self.pressure + rho*g*(h_hs-h)
|
||||
# explicit 4 step Runge Kutta
|
||||
|
||||
# perform explicit 4 step Runge Kutta
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
|
||||
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
|
||||
@@ -237,6 +262,7 @@ class Ausgleichsbecken_class:
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
||||
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
||||
|
||||
# set/update the attributes to their new values
|
||||
self.set_outflux(ynp1*A_a,display_warning=False)
|
||||
self.update_level(dt,set_flag=True)
|
||||
self.update_volume(set_flag=True)
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -10,13 +10,15 @@ from functions.pressure_conversion import pressure_conversion
|
||||
|
||||
class Druckrohrleitung_class:
|
||||
# units
|
||||
# make sure that units and display units are the same
|
||||
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
|
||||
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
||||
angle_unit = 'rad'
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
length_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
@@ -27,33 +29,54 @@ class Druckrohrleitung_class:
|
||||
density_unit_disp = 'kg/m³'
|
||||
flux_unit_disp = 'm³/s'
|
||||
length_unit_disp = 'm'
|
||||
# pressure_unit_disp will be set within the __init__() method
|
||||
time_unit_disp = 's'
|
||||
velocity_unit_disp = 'm/s' # for flux and pressure propagation
|
||||
volume_unit_disp = 'm³'
|
||||
|
||||
g = 9.81
|
||||
g = 9.81 # m/s² gravitational acceleration
|
||||
|
||||
# init
|
||||
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
|
||||
def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
|
||||
"""
|
||||
Creates a reservoir with given attributes in this order: \n
|
||||
Pipeline length [m] \n
|
||||
Pipeline diameter [m] \n
|
||||
Pipeline head [m] \n
|
||||
Number of pipeline segments [1] \n
|
||||
Darcy friction factor [1] \n
|
||||
Pressure wave velocity [m/s] \n
|
||||
Simulation timestep [s] \n
|
||||
Pressure unit for displaying [string] \n
|
||||
Density of the liquid [kg/m³] \n
|
||||
"""
|
||||
self.length = total_length # total length of the pipeline
|
||||
self.dia = diameter # diameter of the pipeline
|
||||
self.head = pipeline_head # hydraulic head of the pipeline
|
||||
self.n_seg = number_segments # number of segments for the method of characteristics
|
||||
self.angle = pipeline_angle # angle of the pipeline
|
||||
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
||||
self.c = pw_vel
|
||||
self.c = pw_vel # propagation velocity of pressure wave
|
||||
self.dt = timestep
|
||||
self.density = rho # density of the liquid in the pipeline
|
||||
|
||||
self.A = (diameter/2)**2*np.pi
|
||||
|
||||
# derivatives of input attributes
|
||||
self.angle = np.arcsin(self.head/self.length) # angle of the pipeline
|
||||
self.A = (diameter/2)**2*np.pi # crossectional area of the pipeline
|
||||
self.dx = total_length/number_segments # length of each segment
|
||||
self.x_vec = np.arange(0,(number_segments+1),1)*self.dx # vector giving the distance from each node to the start of the pipeline
|
||||
self.h_vec = np.arange(0,(number_segments+1),1)*self.head/self.n_seg # vector giving the height difference from each node to the start of the pipeline
|
||||
|
||||
self.pressure_unit_disp = pressure_unit_disp
|
||||
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
|
||||
|
||||
# setter
|
||||
def set_initial_pressure(self,pressure):
|
||||
# setter - set attributes
|
||||
def set_initial_pressure(self,pressure,display_warning=True):
|
||||
# initialize the pressure distribution in the pipeline
|
||||
if display_warning == True:
|
||||
print('You are setting the pressure distribution in the pipeline manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the set_steady_state() method instead.')
|
||||
|
||||
# make sure the vector has the right size
|
||||
if np.size(pressure) == 1:
|
||||
p0 = np.full_like(self.x_vec,pressure)
|
||||
elif np.size(pressure) == np.size(self.x_vec):
|
||||
@@ -64,11 +87,18 @@ class Druckrohrleitung_class:
|
||||
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
||||
self.p_old = p0.copy()
|
||||
self.p = p0.copy()
|
||||
# initialize the vectors in which the minimal and maximal value of the pressure at each node are stores
|
||||
self.p_min = p0.copy()
|
||||
self.p_max = p0.copy()
|
||||
|
||||
def set_initial_flow_velocity(self,velocity):
|
||||
def set_initial_flow_velocity(self,velocity, display_warning=True):
|
||||
# initialize the velocity distribution in the pipeline
|
||||
if display_warning == True:
|
||||
print('You are setting the velocity distribution in the pipeline manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the set_steady_state() method instead.')
|
||||
|
||||
# make sure the vector has the right size
|
||||
if np.size(velocity) == 1:
|
||||
v0 = np.full_like(self.x_vec,velocity)
|
||||
elif np.size(velocity) == np.size(self.x_vec):
|
||||
@@ -79,6 +109,7 @@ class Druckrohrleitung_class:
|
||||
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
||||
self.v_old = v0.copy()
|
||||
self.v = v0.copy()
|
||||
# initialize the vectors in which the minimal and maximal value of the velocity at each node are stores
|
||||
self.v_min = v0.copy()
|
||||
self.v_max = v0.copy()
|
||||
|
||||
@@ -114,21 +145,19 @@ class Druckrohrleitung_class:
|
||||
self.p[0] = p_boundary_res
|
||||
self.p[-1] = p_boundary_tur
|
||||
|
||||
def set_steady_state(self,ss_flux,ss_level_reservoir,area_reservoir,x_vec,h_vec):
|
||||
def set_steady_state(self,ss_flux,ss_pressure_res):
|
||||
# set the pressure and velocity distributions, that allow a constant flow of water from the (steady-state) reservoir to the (steady-state) turbine
|
||||
# the flow velocity is given by the constant flow through the pipe
|
||||
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
|
||||
|
||||
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
|
||||
ss_v_in_res = abs(ss_flux/area_reservoir)
|
||||
ss_v_out_res = abs(ss_flux/self.A)
|
||||
ss_pressure_res = self.density*self.g*(ss_level_reservoir)+self.density*ss_v_out_res*(ss_v_in_res-ss_v_out_res)
|
||||
ss_pressure = ss_pressure_res+(self.density*self.g*h_vec)-(self.f_D*x_vec/self.dia*self.density/2*ss_v0**2)
|
||||
ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2)
|
||||
|
||||
self.set_initial_flow_velocity(ss_v0)
|
||||
self.set_initial_pressure(ss_pressure)
|
||||
# set the initial conditions
|
||||
self.set_initial_flow_velocity(ss_v0,display_warning=False)
|
||||
self.set_initial_pressure(ss_pressure,display_warning=False)
|
||||
|
||||
# getter
|
||||
# getter - return attributes
|
||||
def get_info(self):
|
||||
new_line = '\n'
|
||||
angle_deg = round(self.angle/np.pi*180,3)
|
||||
@@ -139,6 +168,7 @@ class Druckrohrleitung_class:
|
||||
f"----------------------------- {new_line}"
|
||||
f"Length = {self.length:<10} {self.length_unit_disp} {new_line}"
|
||||
f"Diameter = {self.dia:<10} {self.length_unit_disp} {new_line}"
|
||||
f"Hydraulic head = {self.head:<10} {self.length_unit_disp} {new_line}"
|
||||
f"Number of segments = {self.n_seg:<10} {new_line}"
|
||||
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
|
||||
f"Length per segments = {self.dx:<10} {self.length_unit_disp} {new_line}"
|
||||
@@ -148,17 +178,16 @@ class Druckrohrleitung_class:
|
||||
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
|
||||
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
|
||||
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
|
||||
f"Number of timesteps = {self.nt:<10} {new_line}"
|
||||
f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_disp} {new_line}"
|
||||
f"----------------------------- {new_line}"
|
||||
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
|
||||
|
||||
print(print_str)
|
||||
|
||||
def get_current_pressure_distribution(self,disp=False):
|
||||
if disp == True:
|
||||
def get_current_pressure_distribution(self,disp_flag=False):
|
||||
# disp_flag if one wants to directly plot the return of this method
|
||||
if disp_flag == True: # convert to pressure unit disp
|
||||
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
|
||||
elif disp == False:
|
||||
elif disp_flag == False: # stay in Pa
|
||||
return self.p
|
||||
|
||||
def get_current_velocity_distribution(self):
|
||||
@@ -167,16 +196,16 @@ class Druckrohrleitung_class:
|
||||
def get_current_flux_distribution(self):
|
||||
return self.v*self.A
|
||||
|
||||
def get_lowest_pressure_per_node(self,disp=False):
|
||||
if disp == True:
|
||||
def get_lowest_pressure_per_node(self,disp_flag=False):
|
||||
if disp_flag == True: # convert to pressure unit disp
|
||||
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
|
||||
elif disp == False:
|
||||
elif disp_flag == False: # stay in Pa
|
||||
return self.p_min
|
||||
|
||||
def get_highest_pressure_per_node(self,disp=False):
|
||||
if disp == True:
|
||||
def get_highest_pressure_per_node(self,disp_flag=False):
|
||||
if disp_flag == True: # convert to pressure unit disp
|
||||
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
|
||||
elif disp == False:
|
||||
elif disp_flag == False: # stay in Pa
|
||||
return self.p_max
|
||||
|
||||
def get_lowest_velocity_per_node(self):
|
||||
@@ -196,12 +225,13 @@ class Druckrohrleitung_class:
|
||||
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
|
||||
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
|
||||
|
||||
# constants for cleaner formula
|
||||
nn = self.n_seg+1 # number of nodes
|
||||
rho = self.density # density of liquid
|
||||
c = self.c # pressure propagation velocity
|
||||
f_D = self.f_D # Darcy friction coefficient
|
||||
dt = self.dt # timestep
|
||||
D = self.dia # pipeline diametet
|
||||
D = self.dia # pipeline diameter
|
||||
g = self.g # graviational acceleration
|
||||
alpha = self.angle # pipeline angle
|
||||
|
||||
|
||||
@@ -34,20 +34,17 @@
|
||||
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for Turbine\n",
|
||||
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
||||
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
||||
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for PI controller\n",
|
||||
"Con_targetLevel = 8. # [m]\n",
|
||||
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
|
||||
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
||||
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for pipeline\n",
|
||||
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
||||
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
||||
@@ -64,7 +61,6 @@
|
||||
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
||||
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for reservoir\n",
|
||||
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
|
||||
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
|
||||
@@ -86,27 +82,57 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n",
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# create objects\n",
|
||||
"\n",
|
||||
"# Upstream reservoir\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir.set_steady_state(flux_init,level_init)\n",
|
||||
"\n",
|
||||
"# pipeline\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reservoir.get_info(full=True)\n",
|
||||
"pipe.get_info(full=True)"
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
|
||||
"pipe.get_info()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -169,7 +195,46 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The cuboid reservoir has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Base area = 74.0 m² \n",
|
||||
"Outflux area = 0.636 m² \n",
|
||||
"Current level = 8.0 m\n",
|
||||
"Critical level low = 0.0 m \n",
|
||||
"Critical level high = inf m \n",
|
||||
"Volume in reservoir = 592.0 m³ \n",
|
||||
"Current influx = 0.773 m³/s \n",
|
||||
"Current outflux = 0.773 m³/s \n",
|
||||
"Current outflux vel = 1.215 m/s \n",
|
||||
"Current pipe pressure = 7.854 mWS \n",
|
||||
"Simulation timestep = 0.001013 s \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"----------------------------- \n",
|
||||
"\n",
|
||||
"The pipeline has the following attributes: \n",
|
||||
"----------------------------- \n",
|
||||
"Length = 1013.0 m \n",
|
||||
"Diameter = 0.9 m \n",
|
||||
"Hydraulic head = 105.0 m \n",
|
||||
"Number of segments = 50 \n",
|
||||
"Number of nodes = 51 \n",
|
||||
"Length per segments = 20.26 m \n",
|
||||
"Pipeline angle = 0.104 rad \n",
|
||||
"Pipeline angle = 5.95° \n",
|
||||
"Darcy friction factor = 0.014 \n",
|
||||
"Density of liquid = 1000.0 kg/m³ \n",
|
||||
"Pressure wave vel. = 500.0 m/s \n",
|
||||
"Simulation timestep = 0.04052 s \n",
|
||||
"----------------------------- \n",
|
||||
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for it_pipe in range(1,nt+1):\n",
|
||||
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||
@@ -213,12 +278,12 @@
|
||||
" plt.pause(0.000001)\n",
|
||||
"\n",
|
||||
"reservoir.get_info(full=True)\n",
|
||||
"pipe.get_info(full=True)"
|
||||
"pipe.get_info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -85,7 +85,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -93,7 +93,7 @@
|
||||
"offset_pressure = pressure_conversion(Pip_head,'mws',pUnit_calc)\n",
|
||||
"\n",
|
||||
"# Upstream reservoir\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir.set_steady_state(flux_init,level_init)\n",
|
||||
"\n",
|
||||
"# downstream turbine\n",
|
||||
@@ -108,7 +108,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -124,7 +124,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -181,7 +181,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
#based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation
|
||||
|
||||
# performance parameters for controllers
|
||||
def trap_int(vec,timestep):
|
||||
# numerical integration via the trapeziod rule to calculate the performance parameters
|
||||
l = np.size(vec)
|
||||
@@ -41,6 +42,7 @@ def ITAE_fun(error_history,timestep):
|
||||
itae = trap_int(np.abs(e),dt)
|
||||
return itae
|
||||
|
||||
# P controller
|
||||
class P_controller_class:
|
||||
# def __init__(self,setpoint,proportionality_constant):
|
||||
# self.SP = setpoint
|
||||
@@ -72,14 +74,14 @@ class P_controller_class:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
# PI controller
|
||||
class PI_controller_class:
|
||||
# init
|
||||
def __init__(self,setpoint,deadband,proportionality_constant,Ti,timestep,lower_limit=0.,upper_limit=1.):
|
||||
self.SP = setpoint
|
||||
self.db = deadband
|
||||
self.Kp = proportionality_constant
|
||||
self.Ti = Ti # integration time
|
||||
self.Ti = Ti # ~integration time
|
||||
self.dt = timestep
|
||||
# use a list to be able to append more easily - will get converted to np.array when needed
|
||||
self.error_history = [0]
|
||||
@@ -88,15 +90,13 @@ class PI_controller_class:
|
||||
self.cv_upper_limit = upper_limit # limits for the controll variable
|
||||
|
||||
# setter
|
||||
|
||||
|
||||
def set_setpoint(self,setpoint):
|
||||
self.SP = setpoint
|
||||
|
||||
def set_control_variable(self,control_variable, display_warning=True):
|
||||
if display_warning == True:
|
||||
print('WARNING! You are setting the control variable of the PI controller manually \
|
||||
and are not using the .update_controll_variable() method')
|
||||
print('WARNING! You are setting the control variable of the PI controller manually! \
|
||||
Consider using the .update_controll_variable() method instead.')
|
||||
self.control_variable = control_variable
|
||||
|
||||
# getter
|
||||
@@ -167,14 +167,13 @@ class PI_controller_class:
|
||||
# only if that is the case, change control variable
|
||||
if abs(self.error) > self.db:
|
||||
new_control = cv+Kp*(e0-e1)+dt/Ti*e0
|
||||
else:
|
||||
new_control = cv
|
||||
|
||||
# ensure that the controll variable stays within the predefined limits
|
||||
if new_control < self.cv_lower_limit:
|
||||
new_control = self.cv_lower_limit
|
||||
if new_control > self.cv_upper_limit:
|
||||
new_control = self.cv_upper_limit
|
||||
else:
|
||||
new_control = cv
|
||||
|
||||
# set the control variable attribute
|
||||
self.set_control_variable(new_control,display_warning=False)
|
||||
|
||||
@@ -11,8 +11,8 @@ sys.path.append(parent)
|
||||
from functions.pressure_conversion import pressure_conversion
|
||||
|
||||
class Francis_Turbine:
|
||||
# units
|
||||
# make sure that units and print units are the same
|
||||
# units
|
||||
# make sure that units and display units are the same
|
||||
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
@@ -32,7 +32,16 @@ class Francis_Turbine:
|
||||
g = 9.81 # m/s² gravitational acceleration
|
||||
|
||||
# init
|
||||
def __init__(self, Q_nenn,p_nenn,t_closing,timestep,pressure_unit_disp):
|
||||
def __init__(self,Q_nenn,p_nenn,t_closing,timestep,pressure_unit_disp):
|
||||
"""
|
||||
Creates a turbine with given attributes in this order: \n
|
||||
Nominal flux [m³/s] \n
|
||||
Nominal pressure [Pa] \n
|
||||
Closing time [s] \n
|
||||
Simulation timestep [s] \n
|
||||
Pressure unit for displaying [string] \n
|
||||
|
||||
"""
|
||||
self.Q_n = Q_nenn # nominal flux
|
||||
self.p_n = p_nenn # nominal pressure
|
||||
self.LA_n = 1. # 100% # nominal Leitapparatöffnung
|
||||
@@ -42,21 +51,21 @@ class Francis_Turbine:
|
||||
|
||||
self.pressure_unit_disp = pressure_unit_disp
|
||||
|
||||
# initialize for get_info() - parameters will be converted to display -1 if not overwritten
|
||||
self.p = pressure_conversion(-1,self.pressure_unit_disp,self.pressure_unit)
|
||||
self.Q = -1.
|
||||
self.LA = -0.01
|
||||
# initialize for get_info()
|
||||
self.p = -np.inf
|
||||
self.Q = -np.inf
|
||||
self.LA = -np.inf
|
||||
|
||||
|
||||
# setter
|
||||
# setter - set attributes
|
||||
def set_LA(self,LA,display_warning=True):
|
||||
# set Leitapparatöffnung
|
||||
self.LA = LA
|
||||
# warn user, that the .set_LA() method should not be used ot set LA manually
|
||||
if display_warning == True:
|
||||
print('You are setting the guide vane opening of the turbine manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the .update_LA() method instead.')
|
||||
# set Leitapparatöffnung
|
||||
self.LA = LA
|
||||
|
||||
def set_pressure(self,pressure):
|
||||
# set pressure in front of the turbine
|
||||
@@ -70,7 +79,7 @@ class Francis_Turbine:
|
||||
raise Exception('LA out of range [0;1]')
|
||||
self.set_LA(ss_LA,display_warning=False)
|
||||
|
||||
#getter
|
||||
#getter - get attributes
|
||||
def get_current_Q(self):
|
||||
# return the flux through the turbine, based on the current pressure in front
|
||||
# of the turbine and the Leitapparatöffnung
|
||||
@@ -83,8 +92,11 @@ class Francis_Turbine:
|
||||
def get_current_LA(self):
|
||||
return self.LA
|
||||
|
||||
def get_current_pressure(self):
|
||||
def get_current_pressure(self,disp_flag=True):
|
||||
if disp_flag == True:
|
||||
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
|
||||
else:
|
||||
return self.p
|
||||
|
||||
def get_info(self, full = False):
|
||||
new_line = '\n'
|
||||
@@ -135,7 +147,9 @@ class Francis_Turbine:
|
||||
# methods
|
||||
def converge(self,convergence_parameters):
|
||||
# small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the
|
||||
# new pressure from the forward characteristic are not compatible.
|
||||
# new pressure from the forward characteristic are not perfectly compatible.
|
||||
# Therefore, iterate the flux and the pressure so long, until they converge
|
||||
|
||||
eps = 1e-12 # convergence criterion: iteration change < eps
|
||||
iteration_change = 1. # change in Q from one iteration to the next
|
||||
i = 0 # safety variable. break loop if it exceeds 1e6 iterations
|
||||
@@ -150,20 +164,18 @@ class Francis_Turbine:
|
||||
rho = convergence_parameters[7] # density of the liquid
|
||||
dt = convergence_parameters[8] # timestep of the characteristic method
|
||||
|
||||
p_old = self.get_current_pressure()
|
||||
Q_old = self.get_current_Q()
|
||||
v_old = Q_old/area_pipe
|
||||
|
||||
|
||||
while iteration_change > eps:
|
||||
self.set_pressure(p_old)
|
||||
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
|
||||
self.set_pressure(p_new)
|
||||
Q_new = self.get_current_Q()
|
||||
v_new = Q_new/area_pipe
|
||||
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
|
||||
|
||||
iteration_change = abs(Q_old-Q_new)
|
||||
Q_old = Q_new.copy()
|
||||
p_old = p_new.copy()
|
||||
v_old = v_new.copy()
|
||||
i = i+1
|
||||
if i == 1e6:
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -35,20 +35,17 @@
|
||||
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for Turbine\n",
|
||||
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
||||
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
||||
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for PI controller\n",
|
||||
"Con_targetLevel = 8. # [m]\n",
|
||||
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
|
||||
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
||||
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for pipeline\n",
|
||||
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
||||
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
||||
@@ -65,7 +62,6 @@
|
||||
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
||||
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for reservoir\n",
|
||||
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
|
||||
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
|
||||
@@ -78,14 +74,14 @@
|
||||
" # for general simulation\n",
|
||||
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
|
||||
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
|
||||
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
|
||||
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -96,8 +92,8 @@
|
||||
"reservoir.set_steady_state(flux_init,level_init)\n",
|
||||
"\n",
|
||||
"# pipeline\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
|
||||
"\n",
|
||||
"# downstream turbine\n",
|
||||
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
|
||||
@@ -114,7 +110,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -158,7 +154,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -176,8 +172,8 @@
|
||||
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
|
||||
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
|
||||
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
|
||||
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
|
||||
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
|
||||
"\n",
|
||||
@@ -191,7 +187,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -247,7 +243,6 @@
|
||||
" v_old = pipe.get_current_velocity_distribution()\n",
|
||||
" Q_old = pipe.get_current_flux_distribution()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # plot some stuff\n",
|
||||
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
||||
" lo_p.remove()\n",
|
||||
@@ -257,9 +252,9 @@
|
||||
" lo_qmin.remove()\n",
|
||||
" lo_qmax.remove()\n",
|
||||
" # plot new pressure and velocity distribution in the pipeline\n",
|
||||
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp=True),marker='.',c='blue')\n",
|
||||
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
|
||||
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
|
||||
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
|
||||
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
|
||||
@@ -272,7 +267,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -316,8 +311,8 @@
|
||||
"\n",
|
||||
"fig2,axs2 = plt.subplots(1,1)\n",
|
||||
"axs2.set_title('Min and Max Pressure')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
|
||||
"\n",
|
||||
@@ -328,13 +323,6 @@
|
||||
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
|
||||
"\n",
|
||||
"# axs2[0,1].legend()\n",
|
||||
"# axs2[1,0].legend()\n",
|
||||
"# axs2[1,1].legend()\n",
|
||||
"# # axs2[2,0].legend()\n",
|
||||
"# # axs2[2,1].legend()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"fig2.tight_layout()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -18,7 +18,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -30,20 +30,17 @@
|
||||
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for Turbine\n",
|
||||
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
||||
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
||||
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for PI controller\n",
|
||||
"Con_targetLevel = 8. # [m]\n",
|
||||
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
|
||||
"Con_T_i = 1000. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
||||
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for pipeline\n",
|
||||
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
||||
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
||||
@@ -60,7 +57,6 @@
|
||||
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
||||
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # for reservoir\n",
|
||||
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
|
||||
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
|
||||
@@ -73,26 +69,26 @@
|
||||
" # for general simulation\n",
|
||||
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
|
||||
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
|
||||
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
||||
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
|
||||
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create objects\n",
|
||||
"\n",
|
||||
"# Upstream reservoir\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
||||
"reservoir.set_steady_state(flux_init,level_init)\n",
|
||||
"\n",
|
||||
"# pipeline\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_n_seg,Pip_angle,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,level_init,Res_area_base,Pip_x_vec,Pip_h_vec)\n",
|
||||
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
|
||||
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
|
||||
"\n",
|
||||
"# downstream turbine\n",
|
||||
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
|
||||
@@ -109,7 +105,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -158,7 +154,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -176,8 +172,8 @@
|
||||
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
|
||||
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
|
||||
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
|
||||
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
|
||||
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
|
||||
"\n",
|
||||
@@ -191,7 +187,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -247,7 +243,6 @@
|
||||
" v_old = pipe.get_current_velocity_distribution()\n",
|
||||
" Q_old = pipe.get_current_flux_distribution()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # plot some stuff\n",
|
||||
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
||||
" lo_p.remove()\n",
|
||||
@@ -257,9 +252,9 @@
|
||||
" lo_qmin.remove()\n",
|
||||
" lo_qmax.remove()\n",
|
||||
" # plot new pressure and velocity distribution in the pipeline\n",
|
||||
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp=True),marker='.',c='blue')\n",
|
||||
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
|
||||
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
|
||||
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
|
||||
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
|
||||
@@ -272,7 +267,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -316,8 +311,8 @@
|
||||
"\n",
|
||||
"fig2,axs2 = plt.subplots(1,1)\n",
|
||||
"axs2.set_title('Min and Max Pressure')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
|
||||
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
|
||||
"\n",
|
||||
|
||||
@@ -27,8 +27,6 @@ def pa_to_torr(p):
|
||||
def pa_to_atm(p):
|
||||
return p*1/(101.325*1e3)
|
||||
|
||||
# converstion function
|
||||
|
||||
def pa_to_psi(p):
|
||||
return p/6894.8
|
||||
|
||||
|
||||
Reference in New Issue
Block a user