updated steady state test for the pipeline

and visualization of the pressure surge
This commit is contained in:
Brantegger Georg
2023-02-09 15:01:10 +01:00
parent f3983cc007
commit 3b095b2598
2 changed files with 194 additions and 90 deletions

View File

@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 66,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -22,7 +22,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 67,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -80,9 +80,34 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 68,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible via the \n",
" get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n",
" See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n"
]
}
],
"source": [ "source": [
"# create objects\n", "# create objects\n",
"\n", "\n",
@@ -93,12 +118,14 @@
"# pipeline\n", "# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"pipe.get_info()\n" "pipe.get_info()\n",
"\n",
"p_0 = pipe.get_initial_pressure_distribution()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 69,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -106,9 +133,13 @@
"\n", "\n",
"level_vec = np.zeros_like(t_vec)\n", "level_vec = np.zeros_like(t_vec)\n",
"level_vec[0] = reservoir.get_current_level()\n", "level_vec[0] = reservoir.get_current_level()\n",
"volume_vec = np.zeros_like(t_vec) \n",
"volume_vec[0] = reservoir.get_current_volume()\n",
"\n",
"\n", "\n",
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n", "# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
"v_old = pipe.get_current_velocity_distribution()\n", "v_old = pipe.get_current_velocity_distribution()\n",
"Q_old = pipe.get_current_flux_distribution()\n",
"p_old = pipe.get_current_pressure_distribution()\n", "p_old = pipe.get_current_pressure_distribution()\n",
"\n", "\n",
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n", "# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
@@ -116,51 +147,104 @@
" # through the time evolution of the reservoir respectively \n", " # through the time evolution of the reservoir respectively \n",
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n", " # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
"v_boundary_res = np.zeros_like(t_vec)\n", "v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n", "v_boundary_tur = np.full_like(t_vec,v_old[-1])\n",
"p_boundary_res = np.zeros_like(t_vec)\n", "p_boundary_res = np.zeros_like(t_vec)\n",
"p_boundary_tur = np.zeros_like(t_vec)\n", "p_boundary_tur = np.zeros_like(t_vec)\n",
"Q_boundary_res = np.zeros_like(t_vec)\n",
"Q_boundary_tur = np.zeros_like(t_vec)\n",
"\n", "\n",
"# set the boundary conditions for the first timestep\n", "# set the boundary conditions for the first timestep\n",
"v_boundary_res[0] = v_old[0]\n", "v_boundary_res[0] = v_old[0]\n",
"v_boundary_tur[0] = v_old[-1] \n",
"p_boundary_res[0] = p_old[0]\n", "p_boundary_res[0] = p_old[0]\n",
"Q_boundary_res[0] = Q_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n", "p_boundary_tur[0] = p_old[-1]\n",
"\n", "Q_boundary_tur[0] = Q_old[-1]\n"
"v_boundary_tur[:np.argmin(np.abs(t_vec-100))] = v_old[-1] \n",
"v_boundary_tur[np.argmin(np.abs(t_vec-100)):] = 0\n",
"\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 70,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n", "%matplotlib qt5\n",
"fig1,axs1 = plt.subplots(2,1)\n", "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n", "axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ [mWS]')\n", "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([0.9*np.min(pressure_conversion(p_old,'Pa',pUnit_conv)),1.1*np.max(pressure_conversion(p_old,'Pa',pUnit_conv))])\n", "axs1[0].set_ylim([-2,Pip_head*1.1])\n",
"lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa',pUnit_conv),marker='.')\n", "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"\n",
"axs1[1].set_title('Velocity distribution in pipeline')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$v$ [m/s]')\n", "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n", "axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[1].autoscale()\n", "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs1[1].set_ylim([0.9*np.min(v_old),1.1*np.max(v_boundary_res)])\n", "axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n", "\n",
"fig1.tight_layout()\n", "fig1.tight_layout()\n",
"plt.pause(1)" "fig1.show()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 71,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The cuboid reservoir has the following attributes: \n",
"----------------------------- \n",
"Base area = 74.0 m² \n",
"Outflux area = 0.636 m² \n",
"Current level = 8.0 m\n",
"Critical level low = 0.0 m \n",
"Critical level high = inf m \n",
"Volume in reservoir = 592.0 m³ \n",
"Current influx = 0.773 m³/s \n",
"Current outflux = 0.773 m³/s \n",
"Current outflux vel = 1.215 m/s \n",
"Current pipe pressure = 7.854 mWS \n",
"Simulation timestep = 0.001013 s \n",
"Density of liquid = 1000.0 kg/m³ \n",
"----------------------------- \n",
"\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible via the \n",
" get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n",
" See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n"
]
}
],
"source": [ "source": [
"for it_pipe in range(1,nt+1):\n", "for it_pipe in range(1,nt+1):\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n", "# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
@@ -170,8 +254,8 @@
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n", " for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n", " reservoir.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n", " level_vec[it_pipe] = reservoir.get_current_level()\n",
"\n", " volume_vec[it_pipe] = reservoir.get_current_volume() \n",
" \n", " \n",
" # set boundary conditions for the next timestep of the characteristic method\n", " # set boundary conditions for the next timestep of the characteristic method\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n", " p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
@@ -181,6 +265,8 @@
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
" Q_boundary_tur[it_pipe] = pipe.get_current_flux_distribution()[-1]\n",
"\n", "\n",
" # perform the next timestep via the characteristic method\n", " # perform the next timestep via the characteristic method\n",
" pipe.timestep_characteristic_method_vectorized()\n", " pipe.timestep_characteristic_method_vectorized()\n",
@@ -191,17 +277,31 @@
"\n", "\n",
" # plot some stuff\n", " # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_00.remove()\n", " if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n",
" lo_01.remove()\n", " lo_0.remove()\n",
" # lo_02.remove()\n", " lo_0min.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n", " lo_0max.remove()\n",
" lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa', pUnit_conv),marker='.',c='blue')\n", " lo_1.remove()\n",
" lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.',c='blue')\n", " lo_1min.remove()\n",
" \n", " lo_1max.remove()\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n", " lo_2.remove()\n",
" fig1.canvas.draw()\n", " lo_2min.remove()\n",
" fig1.tight_layout()\n", " lo_2max.remove()\n",
" plt.pause(0.000001)\n", " # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw() # force figure output\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) \n",
"\n", "\n",
"reservoir.get_info(full=True)\n", "reservoir.get_info(full=True)\n",
"pipe.get_info()" "pipe.get_info()"
@@ -209,36 +309,56 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 73,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fig2,axs2 = plt.subplots(2,2)\n", "level_plot_min = 0\n",
"axs2[0,0].set_title('Pressure Reservoir')\n", "level_plot_max = 15\n",
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))\n",
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[0,0].set_ylabel(r'$p$ [mWS]')\n",
"axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))])\n",
"\n", "\n",
"axs2[0,1].set_title('Velocity Reservoir')\n", "fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"axs2[0,1].plot(t_vec,v_boundary_res)\n", "fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n",
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", "axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs2[0,1].set_ylim([0.9*np.min(v_boundary_res),1.1*np.max(v_boundary_res)])\n", "axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs3[0,0].legend()\n",
"\n", "\n",
"axs2[1,0].set_title('Pressure Turbine')\n", "# axs3[0,1].set_title('LA')\n",
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))\n", "# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2[1,0].set_ylabel(r'$p$ [mWS]')\n", "# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2[1,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))])\n", "# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n", "\n",
"axs2[1,1].set_title('Velocity Turbine')\n", "axs3[1,0].set_title('Fluxes')\n",
"axs2[1,1].plot(t_vec,v_boundary_tur)\n", "axs3[1,0].plot(t_vec,np.full_like(t_vec,flux_init),label='Influx')\n",
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2[1,1].set_ylim([0.95*np.min(v_boundary_tur),1.05*np.max(v_boundary_tur)])\n", "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n", "\n",
"fig2.tight_layout()\n", "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()" "plt.show()"
] ]
} }

View File

@@ -6,18 +6,19 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n", "import numpy as np\n",
"from Druckrohrleitung_class_file import Druckrohrleitung_class\n", "from Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"import matplotlib.pyplot as plt\n",
"\n", "\n",
"#importing pressure conversion function\n", "#importing pressure conversion function\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n", "parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n", "sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class" "from functions.pressure_conversion import pressure_conversion"
] ]
}, },
{ {
@@ -70,7 +71,7 @@
" # for general simulation\n", " # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n", "flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 3. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "simTime_target = 62. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
] ]
@@ -79,23 +80,6 @@
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"61.1829727786757\n"
]
}
],
"source": [
"print(pressure_conversion(600000,'Pa','mWS'))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# create objects\n", "# create objects\n",
@@ -111,7 +95,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -156,7 +140,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -195,7 +179,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -226,7 +210,7 @@
" v_old = pipe.get_current_velocity_distribution()\n", " v_old = pipe.get_current_velocity_distribution()\n",
"\n", "\n",
" # plot some stuff\n", " # plot some stuff\n",
" if it_pipe%100 == 0:\n", " if it_pipe%200 == 0:\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_0.remove()\n", " lo_0.remove()\n",
" lo_0min.remove()\n", " lo_0min.remove()\n",
@@ -264,7 +248,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [