Merge branch 'Dev'

This commit is contained in:
Brantegger Georg
2022-08-09 13:59:08 +02:00
8 changed files with 858 additions and 201 deletions

1
.gitignore vendored
View File

@@ -3,3 +3,4 @@
.vscode/settings.json
*.pyc
Messing Around/
Messing Around/messy_nb.ipynb

View File

@@ -240,7 +240,7 @@ class Druckrohrleitung_class:
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1]) - 0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1])-0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
# update overall min and max values for pressure and velocity per node
@@ -254,3 +254,35 @@ class Druckrohrleitung_class:
# else one can overwrite data by accidient and change two variables at once without noticing
self.p_old = self.p.copy()
self.v_old = self.v.copy()
def timestep_characteristic_method_vectorized(self):
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
# constants for cleaner formula
rho = self.density # density of liquid
c = self.c # pressure propagation velocity
f_D = self.f_D # Darcy friction coefficient
dt = self.dt # timestep
D = self.dia # pipeline diameter
g = self.g # graviational acceleration
alpha = self.angle # pipeline angle
# Vectorized loop
self.v[1:-1] = 0.5*(self.v_old[2:]+self.v_old[:-2])-0.5/(rho*c)*(self.p_old[2:]-self.p_old[:-2]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(np.abs(self.v_old[2:])*self.v_old[2:]+np.abs(self.v_old[:-2])*self.v_old[:-2])
self.p[1:-1] = 0.5*(self.p_old[2:]+self.p_old[:-2])-0.5*rho*c*(self.v_old[2:]-self.v_old[:-2]) \
+f_D*rho*c*dt/(4*D)*(np.abs(self.v_old[2:])*self.v_old[2:]-np.abs(self.v_old[:-2])*self.v_old[:-2])
# update overall min and max values for pressure and velocity per node
self.p_min = np.minimum(self.p_min,self.p)
self.p_max = np.maximum(self.p_max,self.p)
self.v_min = np.minimum(self.v_min,self.v)
self.v_max = np.maximum(self.v_max,self.v)
# prepare for next call
# use .copy() to write data to another memory location and avoid the usual python reference pointer
# else one can overwrite data by accidient and change two variables at once without noticing
self.p_old = self.p.copy()
self.v_old = self.v.copy()

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -80,48 +80,9 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
]
}
],
"outputs": [],
"source": [
"# create objects\n",
"\n",
@@ -137,7 +98,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -168,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -193,48 +154,9 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The cuboid reservoir has the following attributes: \n",
"----------------------------- \n",
"Base area = 74.0 m² \n",
"Outflux area = 0.636 m² \n",
"Current level = 8.0 m\n",
"Critical level low = 0.0 m \n",
"Critical level high = inf m \n",
"Volume in reservoir = 592.0 m³ \n",
"Current influx = 0.773 m³/s \n",
"Current outflux = 0.773 m³/s \n",
"Current outflux vel = 1.215 m/s \n",
"Current pipe pressure = 7.854 mWS \n",
"Simulation timestep = 0.001013 s \n",
"Density of liquid = 1000.0 kg/m³ \n",
"----------------------------- \n",
"\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n"
]
}
],
"outputs": [],
"source": [
"for it_pipe in range(1,nt+1):\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
@@ -257,7 +179,7 @@
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" pipe.timestep_characteristic_method()\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
@@ -283,7 +205,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [

View File

@@ -0,0 +1,114 @@
import numpy as np
#importing Druckrohrleitung
import sys
import os
current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
from Turbinen.Turbinen_class_file import Francis_Turbine
class Kraftwerk_class:
g = 9.81
def __init__(self):
self.turbines = []
self.n_turbines = 0
# setter
def set_LAs(self,LA_vec,display_warning=True):
for i in range(self.n_turbines):
self.turbines[i].set_LA(LA_vec[i],display_warning)
def set_pressure(self,pressure):
for i in range(self.n_turbines):
self.turbines[i].set_pressure(pressure)
def set_steady_state(self,ss_flux,ss_pressure):
self.identify_Q_proportion()
for i in range(self.n_turbines):
self.turbines[i].set_steady_state(ss_flux*self.Q_prop[i],ss_pressure)
# getter
def get_current_Q(self):
Q = 0
for i in range(self.n_turbines):
Q += self.turbines[i].get_current_Q()
return Q
def get_current_LAs(self):
LAs = []
for i in range(self.n_turbines):
LAs.append(self.turbines[i].get_current_LA())
return np.array(LAs)
def get_current_pressure(self):
pressures = []
for i in range(self.n_turbines):
pressures.append(self.turbines[i].get_current_pressure())
return np.array(pressures) # consider taking the average, after evaluating how the converge() method affects the result
def get_n_turbines(self):
return self.n_turbines
def get_info(self):
for turbine in self.turbines:
turbine.get_info(full=True)
# methods
def identify_Q_proportion(self):
Q_n_vec = np.zeros(self.n_turbines)
for i in range(self.n_turbines):
Q_n_vec[i] = self.turbines[i].get_Q_n()
self.Q_prop = Q_n_vec/np.sum(Q_n_vec)
def add_turbine(self,turbine):
self.turbines.append(turbine)
self.n_turbines += 1
def update_LAs(self,LA_soll_vec):
for i in range(self.n_turbines):
self.turbines[i].update_LA(LA_soll_vec[i])
def converge(self,convergence_parameters):
# small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the
# new pressure from the forward characteristic are not perfectly compatible.
# Therefore, iterate the flux and the pressure so long, until they converge
eps = 1e-12 # convergence criterion: iteration change < eps
iteration_change = 1. # change in Q from one iteration to the next
i = 0 # safety variable. break loop if it exceeds 1e6 iterations
g = self.g # gravitational acceleration
p = convergence_parameters[0] # pressure at second to last node (see method of characterisctics - boundary condidtions)
v = convergence_parameters[1] # velocity at second to last node (see method of characterisctics - boundary condidtions)
D = convergence_parameters[2] # diameter of the pipeline
area_pipe = convergence_parameters[3] # area of the pipeline
alpha = convergence_parameters[4] # elevation angle of the pipeline
f_D = convergence_parameters[5] # Darcy friction coefficient
c = convergence_parameters[6] # pressure wave propagtation velocity
rho = convergence_parameters[7] # density of the liquid
dt = convergence_parameters[8] # timestep of the characteristic method
Q_old = self.get_current_Q()
v_old = Q_old/area_pipe
while iteration_change > eps:
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
self.set_pressure(p_new)
Q_new = self.get_current_Q()
v_new = Q_new/area_pipe
iteration_change = abs(Q_old-Q_new)
Q_old = Q_new.copy()
v_old = v_new.copy()
i = i+1
if i == 1e6:
print('did not converge')
break
# print(i)

View File

@@ -2,13 +2,19 @@
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from Kraftwerk_class_file import Kraftwerk_class\n",
"\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
@@ -18,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -30,10 +36,23 @@
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
" # for Turbine\n",
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"Tur_closingTime = 90. # [s] closing time of turbine\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T1_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"OL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T2_closingTime = 90. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 90. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
@@ -67,16 +86,16 @@
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn)/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -90,27 +109,40 @@
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
"turbine.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"# influx setting turbine\n",
"turbine_in = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
"turbine_in.set_steady_state(flux_init,Tur_p_nenn)\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"# level controll\n",
"KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(turbine.get_current_LA(),display_warning=False)\n"
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# initialization for Timeloop\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution()\n",
"v_min = pipe.get_current_velocity_distribution()\n",
"v_max = pipe.get_current_velocity_distribution()\n",
@@ -121,9 +153,6 @@
"p_min = pipe.get_current_pressure_distribution()\n",
"p_max = pipe.get_current_pressure_distribution()\n",
"\n",
"Q_in_vec = np.zeros_like(t_vec)\n",
"Q_in_vec[0] = flux_init\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n",
"Q_boundary_res = np.zeros_like(t_vec)\n",
@@ -131,9 +160,6 @@
"p_boundary_res = np.zeros_like(t_vec)\n",
"p_boundary_tur = np.zeros_like(t_vec)\n",
"\n",
"level_vec = np.full_like(t_vec,level_init) # level at the end of each pipeline timestep\n",
"volume_vec = np.full_like(t_vec,reservoir.get_current_volume()) # volume at the end of each pipeline timestep\n",
"\n",
"v_boundary_res[0] = v_old[0]\n",
"v_boundary_tur[0] = v_old[-1] \n",
"Q_boundary_res[0] = Q_old[0]\n",
@@ -141,20 +167,48 @@
"p_boundary_res[0] = p_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n",
"\n",
"LA_soll_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"LA_ist_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec)\n",
"Q_in_vec[0] = flux_init\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # level at the end of each pipeline timestep\n",
"level_vec[0] = level_init\n",
"volume_vec = np.zeros_like(t_vec) # volume at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume()\n",
"\n",
"LA_soll_vec2 = np.full_like(t_vec,turbine_in.get_current_LA())\n",
"LA_soll_vec2[500:] = 0\n",
"# LA_soll_vec2[500:1000] = 0.\n",
"# LA_soll_vec2[1000:1500] = 1. \n",
"# LA_soll_vec2[1500:2000] = 0.\n",
"# LA_soll_vec2[2000:2500] = 0.5 \n"
"# controller\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec)\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n",
"\n",
"# OL KW\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA())\n",
"# OL_T1_LA_soll_vec[2000:] = 0.\n",
"# OL_T1_LA_soll_vec[2000:4000] = 0.\n",
"# OL_T1_LA_soll_vec[4000:6000] = 1. \n",
"# OL_T1_LA_soll_vec[6000:8000] = 0.\n",
"# OL_T1_LA_soll_vec[8000:1000] = 0.5 \n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA())\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec)\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA()\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec)\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA()\n",
"\n",
"# UL KW\n",
"UL_T2_LA_soll_vec = np.full_like(t_vec,UL_T2.get_current_LA())\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec)\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA()\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec)\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -187,7 +241,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -196,9 +250,9 @@
"# loop through Con_T_ime steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" turbine_in.update_LA(LA_soll_vec2[it_pipe])\n",
" turbine_in.set_pressure(Tur_p_nenn)\n",
" Q_in_vec[it_pipe] = turbine_in.get_current_Q()\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_T1_p_nenn)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
@@ -213,20 +267,21 @@
"\n",
" # get the control variable\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" LA_soll_vec[it_pipe] = level_control.get_current_control_variable()\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable()\n",
" \n",
" # change the Leitapparatöffnung based on the target value\n",
" turbine.update_LA(LA_soll_vec[it_pipe])\n",
" LA_ist_vec[it_pipe] = turbine.get_current_LA()\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characterisCon_T_ic method\n",
" turbine.set_pressure(p_old[-1])\n",
" KW_UL.set_pressure(p_old[-1])\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" turbine.converge(convergence_parameters)\n",
" KW_UL.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*turbine.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = turbine.get_current_Q()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
@@ -236,7 +291,7 @@
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characterisCon_T_ic method\n",
" pipe.timestep_characteristic_method()\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
@@ -245,6 +300,7 @@
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0:\n",
" lo_p.remove()\n",
" lo_pmin.remove()\n",
" lo_pmax.remove()\n",
@@ -262,7 +318,7 @@
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.001) "
" plt.pause(0.000001) "
]
},
{
@@ -271,8 +327,6 @@
"metadata": {},
"outputs": [],
"source": [
"# plot Con_T_ime evolution of boundary pressure and velocity as well as the reservoir level\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
@@ -285,54 +339,108 @@
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*LA_soll_vec,label='Target')\n",
"axs2.plot(t_vec,100*LA_ist_vec,label='Actual')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res,pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_tur,label='Flux Turbine')\n",
"axs2.set_ylim(-2*Tur_Q_nenn,+2*Tur_Q_nenn)\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Pressure')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Fluxes')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"# axs2[0,1].legend()\n",
"# axs2[1,0].legend()\n",
"# axs2[1,1].legend()\n",
"# # axs2[2,0].legend()\n",
"# # axs2[2,1].legend()\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"fig3,axs3 = plt.subplots(2,2)\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"axs3[0,0].legend()\n",
"\n",
"axs3[0,1].set_title('LA')\n",
"axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"axs3[0,1].legend()\n",
"\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -78,6 +78,8 @@ class Francis_Turbine:
if ss_LA < 0 or ss_LA > 1:
raise Exception('LA out of range [0;1]')
self.set_LA(ss_LA,display_warning=False)
self.set_pressure(ss_pressure)
self.get_current_Q()
#getter - get attributes
def get_current_Q(self):
@@ -113,22 +115,26 @@ class Francis_Turbine:
f"Nominal pressure = {round(p_n,3):<10} {self.pressure_unit_disp}{new_line}"
f"Nominal LA = {self.LA_n*100:<10} {self.LA_unit_disp} {new_line}"
f"Closing time = {self.t_c:<10} {self.time_unit_disp} {new_line}"
f"Current flux = {self.Q:<10} {self.flux_unit_disp} {new_line}"
f"Current flux = {round(self.Q,3):<10} {self.flux_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"Current LA = {self.LA*100:<10} {self.LA_unit_disp} {new_line}"
f"Current LA = {round(self.LA,4)*100:<10} {self.LA_unit_disp} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
f"----------------------------- {new_line}")
else:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The current attributes are: {new_line}"
f"----------------------------- {new_line}"
f"Current flux = {self.Q:<10} {self.flux_unit_disp} {new_line}"
f"Current flux = {round(self.Q,3):<10} {self.flux_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"Current LA = {self.LA*100:<10} {self.LA_unit_disp} {new_line}"
f"Current LA = {round(self.LA,4)*100:<10} {self.LA_unit_disp} {new_line}"
f"----------------------------- {new_line}")
print(print_str)
def get_Q_n(self):
# needed for Kraftwerk_class
return self.Q_n
# update methods
def update_LA(self,LA_soll):
# update the Leitappartöffnung and consider the restrictions of the closing time of the turbine
@@ -182,4 +188,4 @@ class Francis_Turbine:
print('did not converge')
break
# print(i)
self.Q = Q_new
# self.get_current_Q()

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -74,14 +74,14 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 100. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -110,7 +110,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -149,12 +149,13 @@
"LA_soll_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"LA_ist_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"\n",
"LA_soll_vec2 = np.full_like(t_vec,turbine_in.get_current_LA())\n"
"LA_soll_vec2 = np.full_like(t_vec,turbine_in.get_current_LA())\n",
"# LA_soll_vec2[100:] = 0\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -187,7 +188,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -267,7 +268,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [

473
Untertweng.ipynb Normal file
View File

@@ -0,0 +1,473 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 1000. # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T1_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"OL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T2_closingTime = 90. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 90. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 90. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 1000. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn)/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# initialization for Timeloop\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution()\n",
"v_min = pipe.get_current_velocity_distribution()\n",
"v_max = pipe.get_current_velocity_distribution()\n",
"Q_old = pipe.get_current_flux_distribution()\n",
"Q_min = pipe.get_current_flux_distribution()\n",
"Q_max = pipe.get_current_flux_distribution()\n",
"p_old = pipe.get_current_pressure_distribution()\n",
"p_min = pipe.get_current_pressure_distribution()\n",
"p_max = pipe.get_current_pressure_distribution()\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n",
"Q_boundary_res = np.zeros_like(t_vec)\n",
"Q_boundary_tur = np.zeros_like(t_vec)\n",
"p_boundary_res = np.zeros_like(t_vec)\n",
"p_boundary_tur = np.zeros_like(t_vec)\n",
"\n",
"v_boundary_res[0] = v_old[0]\n",
"v_boundary_tur[0] = v_old[-1] \n",
"Q_boundary_res[0] = Q_old[0]\n",
"Q_boundary_tur[0] = Q_old[-1]\n",
"p_boundary_res[0] = p_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n",
"\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec)\n",
"Q_in_vec[0] = flux_init\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # level at the end of each pipeline timestep\n",
"level_vec[0] = level_init\n",
"volume_vec = np.zeros_like(t_vec) # volume at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume()\n",
"\n",
"# controller\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec)\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n",
"\n",
"# OL KW\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA())\n",
"OL_T1_LA_soll_vec[2000:] = 0.\n",
"OL_T1_LA_soll_vec[2000:4000] = 0.\n",
"OL_T1_LA_soll_vec[4000:6000] = 1. \n",
"OL_T1_LA_soll_vec[6000:8000] = 0.\n",
"OL_T1_LA_soll_vec[8000:1000] = 0.5 \n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA())\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec)\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA()\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec)\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA()\n",
"\n",
"# UL KW\n",
"UL_T2_LA_soll_vec = np.full_like(t_vec,UL_T2.get_current_LA())\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec)\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA()\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec)\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA()\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# Con_T_ime loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(2,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_title('Flux distribution in pipeline')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"axs1[0].autoscale()\n",
"axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt]\n",
"\n",
"# loop through Con_T_ime steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_T1_p_nenn)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
" # set initial condition for the reservoir Con_T_ime evolution calculted with e-RK4\n",
" reservoir.set_pressure(p_old[0],display_warning=False)\n",
" reservoir.set_outflux(Q_old[0],display_warning=False)\n",
" # calculate the Con_T_ime evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" # get the control variable\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable()\n",
" \n",
" # change the Leitapparatöffnung based on the target value\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characterisCon_T_ic method\n",
" KW_UL.set_pressure(p_old[-1])\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" KW_UL.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out)\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characterisCon_T_ic method\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%10 == 0:\n",
" lo_p.remove()\n",
" lo_pmin.remove()\n",
" lo_pmax.remove()\n",
" lo_q.remove()\n",
" lo_qmin.remove()\n",
" lo_qmax.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.000001) "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Pressure')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"fig3,axs3 = plt.subplots(2,2)\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"axs3[0,0].legend()\n",
"\n",
"axs3[0,1].set_title('LA')\n",
"axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"axs3[0,1].legend()\n",
"\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}