updated to use outflux_vel instead of outflux

This commit is contained in:
Brantegger Georg
2022-07-18 08:15:11 +02:00
parent 6d56e3d1f2
commit 5c25e81f37

View File

@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 56,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -16,7 +16,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 57,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -32,14 +32,14 @@
"A_pipe = D**2/4*np.pi # pipeline area\n", "A_pipe = D**2/4*np.pi # pipeline area\n",
"h_pipe = 200 # hydraulic head without reservoir [m] \n", "h_pipe = 200 # hydraulic head without reservoir [m] \n",
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n", "alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
"n = 10 # number of pipe segments in discretization\n", "n = 50 # number of pipe segments in discretization\n",
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n", "# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
"Q0 = 2. # initial flow in whole pipe [m³/s]\n", "Q0 = 2. # initial flow in whole pipe [m³/s]\n",
"v0 = Q0/A_pipe # initial flow velocity [m/s]\n", "v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
"f_D = 0.1 # Darcy friction factor\n", "f_D = 0.01 # Darcy friction factor\n",
"c = 400. # propagation velocity of the pressure wave [m/s]\n", "c = 400. # propagation velocity of the pressure wave [m/s]\n",
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n", "# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
"nt = 100 # number of time steps after initial conditions\n", "nt = 500 # number of time steps after initial conditions\n",
"\n", "\n",
"# derivatives of the pipeline constants\n", "# derivatives of the pipeline constants\n",
"dx = L/n # length of each pipe segment\n", "dx = L/n # length of each pipe segment\n",
@@ -60,7 +60,7 @@
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n", "initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
"initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n", "initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n",
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", "initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"conversion_pressure_unit = 'mWS' # for pressure conversion in print statements and plot labels\n", "conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
"area_base = 20. # total base are of the cuboid reservoir [m²] \n", "area_base = 20. # total base are of the cuboid reservoir [m²] \n",
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n", "area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n", "critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
@@ -91,7 +91,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 58,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -116,7 +116,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 59,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -144,8 +144,8 @@
"v_boundary_tur[0] = v_old[-1] \n", "v_boundary_tur[0] = v_old[-1] \n",
"v_boundary_tur[1:] = 0 # instantaneous closing\n", "v_boundary_tur[1:] = 0 # instantaneous closing\n",
"# v_boundary_tur[0:20] = np.linspace(v_old[-1],0,20) # overwrite for finite closing time - linear case\n", "# v_boundary_tur[0:20] = np.linspace(v_old[-1],0,20) # overwrite for finite closing time - linear case\n",
"const = int(np.min([100,round(nt/1.1)]))\n", "# const = int(np.min([100,round(nt/1.1)]))\n",
"v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi/5)**2\n", "# v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi/5)**2\n",
"p_boundary_res[0] = p_old[0]\n", "p_boundary_res[0] = p_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n", "p_boundary_tur[0] = p_old[-1]\n",
"\n" "\n"
@@ -153,7 +153,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 60,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -186,7 +186,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 61,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -196,7 +196,7 @@
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n", "# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n", " # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
" V.pressure = p_old[0]\n", " V.pressure = p_old[0]\n",
" V.outflux = v_old[0]\n", " V.outflux_vel = v_old[0]\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(nt_eRK4):\n", " for it_res in range(nt_eRK4):\n",
" V.e_RK_4() # call e-RK4 to update outflux\n", " V.e_RK_4() # call e-RK4 to update outflux\n",
@@ -209,7 +209,7 @@
" level_vec[it_pipe] = V.level \n", " level_vec[it_pipe] = V.level \n",
"\n", "\n",
" # set boundary conditions for the next timestep of the characteristic method\n", " # set boundary conditions for the next timestep of the characteristic method\n",
" p_boundary_res[it_pipe] = rho*g*V.level-v_old[1]**2*rho/2\n", " p_boundary_res[it_pipe] = rho*g*V.level-V.outflux_vel**2*rho/2\n",
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n", " v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
" +dt*g*np.sin(alpha)\n", " +dt*g*np.sin(alpha)\n",
"\n", "\n",
@@ -245,7 +245,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 62,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -280,7 +280,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8.13 ('DT_Slot_3')", "display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -299,7 +299,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
} }
} }
}, },