end of day commit - working on turbine class
This commit is contained in:
File diff suppressed because one or more lines are too long
274
Pegelregler_test.ipynb
Normal file
274
Pegelregler_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -42,33 +42,35 @@ def ITAE_fun(error_history,timestep):
|
||||
return itae
|
||||
|
||||
class P_controller_class:
|
||||
def __init__(self,setpoint,proportionality_constant):
|
||||
self.SP = setpoint
|
||||
self.Kp = proportionality_constant
|
||||
self.error_history = []
|
||||
self.control_variable = 0.1
|
||||
self.lower_limit = -0.1 # default
|
||||
self.upper_limit = +0.1 # default
|
||||
# def __init__(self,setpoint,proportionality_constant):
|
||||
# self.SP = setpoint
|
||||
# self.Kp = proportionality_constant
|
||||
# self.error_history = []
|
||||
# self.control_variable = 0.1
|
||||
# self.lower_limit = -0.1 # default
|
||||
# self.upper_limit = +0.1 # default
|
||||
|
||||
def set_control_variable_limits(self,lower_limit,upper_limit):
|
||||
self.lower_limit = lower_limit
|
||||
self.upper_limit = upper_limit
|
||||
# def set_control_variable_limits(self,lower_limit,upper_limit):
|
||||
# self.lower_limit = lower_limit
|
||||
# self.upper_limit = upper_limit
|
||||
|
||||
def calculate_error(self,process_variable):
|
||||
self.error = self.SP-process_variable
|
||||
self.error_history.append(self.error)
|
||||
# def calculate_error(self,process_variable):
|
||||
# self.error = self.SP-process_variable
|
||||
# self.error_history.append(self.error)
|
||||
|
||||
def get_control_variable(self):
|
||||
new_control = self.control_variable+self.Kp*(self.error_history[-1]-self.error_history[-2])
|
||||
if new_control < self.lower_limit:
|
||||
new_control = self.lower_limit
|
||||
# def get_control_variable(self):
|
||||
# new_control = self.control_variable+self.Kp*(self.error_history[-1]-self.error_history[-2])
|
||||
# if new_control < self.lower_limit:
|
||||
# new_control = self.lower_limit
|
||||
|
||||
if new_control > self.upper_limit:
|
||||
new_control = self.upper_limit
|
||||
# if new_control > self.upper_limit:
|
||||
# new_control = self.upper_limit
|
||||
|
||||
self.control_variable = new_control
|
||||
# print(new_control)
|
||||
return new_control
|
||||
# self.control_variable = new_control
|
||||
# # print(new_control)
|
||||
# return new_control
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class PI_controller_class:
|
||||
@@ -77,21 +79,25 @@ class PI_controller_class:
|
||||
self.Kp = proportionality_constant
|
||||
self.Ti = Ti
|
||||
self.dt = timestep
|
||||
self.error_history = [0,0]
|
||||
self.error_history = [0]
|
||||
|
||||
self.control_variable = 0.0
|
||||
self.lower_limit = -1.3 # default
|
||||
self.upper_limit = +1.3 # default
|
||||
self.cv_lower_limit = -1 # default
|
||||
self.cv_upper_limit = +1 # default
|
||||
|
||||
|
||||
def set_control_variable_limits(self,lower_limit,upper_limit):
|
||||
self.lower_limit = lower_limit
|
||||
self.upper_limit = upper_limit
|
||||
self.cv_lower_limit = lower_limit
|
||||
self.cv_upper_limit = upper_limit
|
||||
|
||||
def calculate_error(self,process_variable):
|
||||
self.error = self.SP-process_variable
|
||||
self.error_history.append(self.error)
|
||||
|
||||
def get_control_variable(self):
|
||||
# if np.isclose(self.error,0,atol = 0.1):
|
||||
# self.control_variable = 0
|
||||
|
||||
cv = self.control_variable
|
||||
Kp = self.Kp
|
||||
Ti = self.Ti
|
||||
@@ -100,15 +106,14 @@ class PI_controller_class:
|
||||
e0 = self.error_history[-1]
|
||||
e1 = self.error_history[-2]
|
||||
new_control = cv+Kp*(e0-e1)+dt/Ti*e0
|
||||
if new_control < self.lower_limit:
|
||||
new_control = self.lower_limit
|
||||
if new_control < self.cv_lower_limit:
|
||||
new_control = self.cv_lower_limit
|
||||
|
||||
if new_control > self.upper_limit:
|
||||
new_control = self.upper_limit
|
||||
if new_control > self.cv_upper_limit:
|
||||
new_control = self.cv_upper_limit
|
||||
|
||||
self.control_variable = new_control
|
||||
# print(new_control)
|
||||
return new_control
|
||||
return self.control_variable
|
||||
|
||||
def get_performance_indicators(self,ISE=True,IAE=True,ITSE=True,ITAE=True):
|
||||
ise = np.nan
|
||||
@@ -116,14 +121,16 @@ class PI_controller_class:
|
||||
itse = np.nan
|
||||
itae = np.nan
|
||||
|
||||
# self.error_history[1:] because the first value of the error history is set to [0]
|
||||
# to avoid special case handling in the calculation of the controll variable
|
||||
if ISE == True:
|
||||
ise = ISE_fun(self.error_history[2:],self.dt)
|
||||
ise = ISE_fun(self.error_history[1:],self.dt)
|
||||
if IAE == True:
|
||||
iae = IAE_fun(self.error_history[2:],self.dt)
|
||||
iae = IAE_fun(self.error_history[1:],self.dt)
|
||||
if ITSE == True:
|
||||
itse = ITSE_fun(self.error_history[2:],self.dt)
|
||||
itse = ITSE_fun(self.error_history[1:],self.dt)
|
||||
if ITAE == True:
|
||||
itae = ITAE_fun(self.error_history[2:],self.dt)
|
||||
itae = ITAE_fun(self.error_history[1:],self.dt)
|
||||
|
||||
return ise,iae,itse,itae
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,22 +1,22 @@
|
||||
,11.4,11.2,11,10.8,10.6,10.4,10.2,10,9.8
|
||||
0,0,0,0,0,0,0,0,0,0
|
||||
0.05,44.6719225,43.934144,43.3914212,43.005945,42.7411852,42.5620659,42.4351104,42.3285595,42.2124611
|
||||
0.1,93.5257218,92.1813802,91.0120507,89.9819869,89.0566946,88.2030946,87.3896575,86.5865116,85.7655241
|
||||
0.15,142.455373,140.502298,138.703994,137.026824,135.438371,133.907593,132.404945,130.902474,129.373898
|
||||
0.2,191.35358,188.792245,186.365298,184.041241,181.789769,179.581903,177.390108,175.188376,172.952294
|
||||
0.25,240.112708,236.946245,233.893698,230.92573,228.014163,225.132101,222.254034,219.355912,216.415204
|
||||
0.3,288.625576,284.85976,281.187353,277.581187,274.01522,270.464644,266.905977,263.31713,259.677456
|
||||
0.35,336.786234,332.429439,328.145567,323.909615,319.697669,315.487006,311.256165,306.985012,302.654777
|
||||
0.4,384.490739,379.553866,374.669505,369.814802,364.967956,360.108307,355.216403,350.274048,345.264331
|
||||
0.45,431.637894,426.134271,420.662881,415.202987,409.734875,404.239922,398.700655,393.100789,387.425251
|
||||
0.5,478.129951,472.075209,466.032607,459.983487,453.910176,447.796055,441.625591,435.384378,429.059145
|
||||
0.55,523.873268,517.285198,510.689413,504.069281,497.409128,490.694283,483.911113,477.047044,470.090565
|
||||
0.6,568.778912,561.677293,554.548395,547.377555,540.151033,532.856054,525.480827,518.014558,510.447451
|
||||
0.65,612.763186,605.169605,597.529525,589.830179,582.059697,574.207132,566.262474,558.216649,550.061519
|
||||
0.7,655.7481,647.685753,639.558081,631.354134,623.063835,614.677994,606.188309,597.587364,588.868614
|
||||
0.75,697.661758,689.155243,680.565018,671.881864,663.097416,654.204159,645.195426,636.065384,626.809013
|
||||
0.8,738.438667,729.51377,720.487263,711.35157,702.099947,692.726469,683.226022,673.594278,663.827671
|
||||
0.85,778.019972,768.703447,759.267942,749.707427,740.016685,730.191293,720.227602,710.122707,699.874419
|
||||
0.9,816.35361,806.672962,796.856534,786.899741,776.798797,766.550685,756.153132,745.604572,734.904109
|
||||
0.95,853.394385,843.377654,833.208949,822.885029,812.403437,801.762466,790.961126,779.999101,768.876705
|
||||
1,889.103974,878.779525,868.287549,857.626044,846.793778,835.790258,824.615682,813.270891,801.757325
|
||||
,11.4,11.2,11,10.8,10.6,10.4,10.2,10,9.8
|
||||
0,0,0,0,0,0,0,0,0,0
|
||||
0.05,44.6719225,43.934144,43.3914212,43.005945,42.7411852,42.5620659,42.4351104,42.3285595,42.2124611
|
||||
0.1,93.5257218,92.1813802,91.0120507,89.9819869,89.0566946,88.2030946,87.3896575,86.5865116,85.7655241
|
||||
0.15,142.455373,140.502298,138.703994,137.026824,135.438371,133.907593,132.404945,130.902474,129.373898
|
||||
0.2,191.35358,188.792245,186.365298,184.041241,181.789769,179.581903,177.390108,175.188376,172.952294
|
||||
0.25,240.112708,236.946245,233.893698,230.92573,228.014163,225.132101,222.254034,219.355912,216.415204
|
||||
0.3,288.625576,284.85976,281.187353,277.581187,274.01522,270.464644,266.905977,263.31713,259.677456
|
||||
0.35,336.786234,332.429439,328.145567,323.909615,319.697669,315.487006,311.256165,306.985012,302.654777
|
||||
0.4,384.490739,379.553866,374.669505,369.814802,364.967956,360.108307,355.216403,350.274048,345.264331
|
||||
0.45,431.637894,426.134271,420.662881,415.202987,409.734875,404.239922,398.700655,393.100789,387.425251
|
||||
0.5,478.129951,472.075209,466.032607,459.983487,453.910176,447.796055,441.625591,435.384378,429.059145
|
||||
0.55,523.873268,517.285198,510.689413,504.069281,497.409128,490.694283,483.911113,477.047044,470.090565
|
||||
0.6,568.778912,561.677293,554.548395,547.377555,540.151033,532.856054,525.480827,518.014558,510.447451
|
||||
0.65,612.763186,605.169605,597.529525,589.830179,582.059697,574.207132,566.262474,558.216649,550.061519
|
||||
0.7,655.7481,647.685753,639.558081,631.354134,623.063835,614.677994,606.188309,597.587364,588.868614
|
||||
0.75,697.661758,689.155243,680.565018,671.881864,663.097416,654.204159,645.195426,636.065384,626.809013
|
||||
0.8,738.438667,729.51377,720.487263,711.35157,702.099947,692.726469,683.226022,673.594278,663.827671
|
||||
0.85,778.019972,768.703447,759.267942,749.707427,740.016685,730.191293,720.227602,710.122707,699.874419
|
||||
0.9,816.35361,806.672962,796.856534,786.899741,776.798797,766.550685,756.153132,745.604572,734.904109
|
||||
0.95,853.394385,843.377654,833.208949,822.885029,812.403437,801.762466,790.961126,779.999101,768.876705
|
||||
1,889.103974,878.779525,868.287549,857.626044,846.793778,835.790258,824.615682,813.270891,801.757325
|
||||
|
@@ -1,19 +1,30 @@
|
||||
def turbine_flux(p,LA,p_exp,cubic_coeff,quadratic_coeff,linear_coeff,const_coeff):
|
||||
return (p*1e-5)**p_exp*(cubic_coeff*LA**3+quadratic_coeff*LA**2+linear_coeff*LA+const_coeff)
|
||||
from matplotlib.pyplot import fill
|
||||
import numpy as np
|
||||
from scipy.interpolate import interp2d
|
||||
|
||||
#importing pressure conversion function
|
||||
import sys
|
||||
import os
|
||||
current = os.path.dirname(os.path.realpath(__file__))
|
||||
parent = os.path.dirname(current)
|
||||
sys.path.append(parent)
|
||||
from functions.pressure_conversion import pressure_conversion
|
||||
|
||||
class Francis_turbine_class:
|
||||
def __init__(self):
|
||||
pass
|
||||
def __init__(self,CSV_name='Durchflusskennlinie.csv'):
|
||||
self.raw_csv = np.genfromtxt(CSV_name,delimiter=',')
|
||||
|
||||
def extract_csv(self,CSV_pressure_unit='bar'):
|
||||
self.raw_ps_vec,_ = pressure_conversion(self.raw_csv[0,1:],CSV_pressure_unit,'Pa')
|
||||
self.raw_LA_vec = self.raw_csv[1:,0]
|
||||
self.raw_Qs_mat = self.raw_csv[1:,1:]
|
||||
|
||||
def get_Q_fun(self):
|
||||
Q_fun = interp2d(self.raw_ps_vec,self.raw_LA_vec,self.raw_Qs_mat,bounds_error=False,fill_value=None)
|
||||
return Q_fun
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def set_turbine_flux_parameters(self,p_exp,cubic_coeff,quadratic_coeff,linear_coeff,const_coeff):
|
||||
# extracted from the Muschelkurve of the Turbine and used to calculate the turbine flux for a given pressure
|
||||
self.p_exp = p_exp
|
||||
self.cubic_coeff = cubic_coeff
|
||||
self.quadratic_coeff = quadratic_coeff
|
||||
self.linear_coeff = linear_coeff
|
||||
self.const_coeff = const_coeff
|
||||
|
||||
def get_turbine_flux(self,pressure,Leitapparatöffnung):
|
||||
self.flux = turbine_flux(pressure,Leitapparatöffnung,self.p_exp,self.cubic_coeff,self.quadratic_coeff,self.linear_coeff,self.const_coeff)
|
||||
return self.flux
|
||||
File diff suppressed because one or more lines are too long
308
Untertweng.ipynb
Normal file
308
Untertweng.ipynb
Normal file
@@ -0,0 +1,308 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"from functions.pressure_conversion import pressure_conversion\n",
|
||||
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
||||
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#define constants\n",
|
||||
"\n",
|
||||
"# physics\n",
|
||||
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
||||
"rho = 1000. # density of water [kg/m³]\n",
|
||||
"\n",
|
||||
"# pipeline\n",
|
||||
"L = 1000. # length of pipeline [m]\n",
|
||||
"D = 1. # pipe diameter [m]\n",
|
||||
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
||||
"h_pipe = 200 # hydraulic head without reservoir [m] \n",
|
||||
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
||||
"n = 50 # number of pipe segments in discretization\n",
|
||||
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
|
||||
"Q0 = 2. # initial flow in whole pipe [m³/s]\n",
|
||||
"v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
|
||||
"f_D = 0.01 # Darcy friction factor\n",
|
||||
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
||||
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
||||
"nt = 500 # number of time steps after initial conditions\n",
|
||||
"\n",
|
||||
"# derivatives of the pipeline constants\n",
|
||||
"dx = L/n # length of each pipe segment\n",
|
||||
"dt = dx/c # timestep according to method of characterisitics\n",
|
||||
"nn = n+1 # number of nodes\n",
|
||||
"initial_level = 20. # water level in upstream reservoir [m]\n",
|
||||
"p0 = rho*g*initial_level-v0**2*rho/2\n",
|
||||
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
||||
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
||||
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
||||
"v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
|
||||
"p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# reservoir\n",
|
||||
"# replace influx by vector\n",
|
||||
"initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n",
|
||||
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
||||
"initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n",
|
||||
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
||||
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
|
||||
"area_base = 20. # total base are of the cuboid reservoir [m²] \n",
|
||||
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
|
||||
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
|
||||
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
|
||||
"\n",
|
||||
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
||||
"nt_eRK4 = 1000 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
||||
"simulation_timestep = dt/nt_eRK4\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"#### Ideas for checks after constant definitions: \n",
|
||||
"\n",
|
||||
"- Check that the initial pressure is not negative:\n",
|
||||
" - may happen, if there is too little hydraulic head to create the initial flow conditions with the given friction\n",
|
||||
"<br>\n",
|
||||
"<br>\n",
|
||||
"- plausbility checks?\n",
|
||||
" - area > area_outflux ?\n",
|
||||
" - propable ranges for parameters?\n",
|
||||
" - angle and height/length fit together?\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create objects\n",
|
||||
"\n",
|
||||
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,simulation_timestep)\n",
|
||||
"V.set_initial_level(initial_level) \n",
|
||||
"V.set_influx(initial_influx)\n",
|
||||
"V.set_outflux(initial_outflux)\n",
|
||||
"V.set_pressure(initial_pipeline_pressure,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||
"\n",
|
||||
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
||||
"pipe.set_pressure_propagation_velocity(c)\n",
|
||||
"pipe.set_number_of_timesteps(nt)\n",
|
||||
"pipe.set_initial_pressure(p_init,initial_pressure_unit,conversion_pressure_unit)\n",
|
||||
"pipe.set_initial_flow_velocity(v_init)\n",
|
||||
"\n",
|
||||
"# display the attributes of the created reservoir and pipeline object\n",
|
||||
"# V.get_info(full=True)\n",
|
||||
"# pipe.get_info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# initialization for timeloop\n",
|
||||
"\n",
|
||||
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
||||
"v_old = v_init.copy()\n",
|
||||
"p_old = p_init.copy()\n",
|
||||
"\n",
|
||||
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
||||
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
||||
" # through the time evolution of the reservoir respectively \n",
|
||||
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
|
||||
"v_boundary_res = np.empty_like(t_vec)\n",
|
||||
"v_boundary_tur = np.empty_like(t_vec)\n",
|
||||
"p_boundary_res = np.empty_like(t_vec)\n",
|
||||
"p_boundary_tur = np.empty_like(t_vec)\n",
|
||||
"\n",
|
||||
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
||||
"level_vec = np.full(nt+1,initial_level) # level at the end of each pipeline timestep\n",
|
||||
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
||||
"\n",
|
||||
"# set the boudary conditions for the first timestep\n",
|
||||
"v_boundary_res[0] = v_old[0]\n",
|
||||
"v_boundary_tur[0] = v_old[-1] \n",
|
||||
"v_boundary_tur[1:] = 0 # instantaneous closing\n",
|
||||
"# v_boundary_tur[0:20] = np.linspace(v_old[-1],0,20) # overwrite for finite closing time - linear case\n",
|
||||
"# const = int(np.min([100,round(nt/1.1)]))\n",
|
||||
"# v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi/5)**2\n",
|
||||
"p_boundary_res[0] = p_old[0]\n",
|
||||
"p_boundary_tur[0] = p_old[-1]\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 60,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib qt5\n",
|
||||
"# time loop\n",
|
||||
"\n",
|
||||
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
||||
"fig1,axs1 = plt.subplots(2,1)\n",
|
||||
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
||||
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
||||
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||
"axs1[0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||
"axs1[1].set_ylabel(r'$v$ [$\\mathrm{m} / \\mathrm{s}$]')\n",
|
||||
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.')\n",
|
||||
"lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.')\n",
|
||||
"axs1[0].autoscale()\n",
|
||||
"axs1[1].autoscale()\n",
|
||||
"# displaying the reservoir level within each pipeline timestep\n",
|
||||
"# axs1[2].set_title('Level reservoir')\n",
|
||||
"# axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"# axs1[2].set_ylabel(r'$h$ [m]')\n",
|
||||
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
||||
"# axs1[2].autoscale()\n",
|
||||
"fig1.tight_layout()\n",
|
||||
"fig1.show()\n",
|
||||
"plt.pause(1)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# loop through time steps of the pipeline\n",
|
||||
"for it_pipe in range(1,pipe.nt+1):\n",
|
||||
"\n",
|
||||
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
||||
" V.pressure = p_old[0]\n",
|
||||
" V.outflux_vel = v_old[0]\n",
|
||||
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
||||
" for it_res in range(nt_eRK4):\n",
|
||||
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
||||
" V.level = V.update_level(V.timestep) # \n",
|
||||
" V.set_volume() # update volume in reservoir\n",
|
||||
" level_vec_2[it_res] = V.level # save for plotting\n",
|
||||
" if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n",
|
||||
" i_max = it_pipe # for plotting only calculated values\n",
|
||||
" break \n",
|
||||
" level_vec[it_pipe] = V.level \n",
|
||||
"\n",
|
||||
" # set boundary conditions for the next timestep of the characteristic method\n",
|
||||
" p_boundary_res[it_pipe] = rho*g*V.level-V.outflux_vel**2*rho/2\n",
|
||||
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
||||
" +dt*g*np.sin(alpha)\n",
|
||||
"\n",
|
||||
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
||||
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
||||
" p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n",
|
||||
"\n",
|
||||
" # perform the next timestep via the characteristic method\n",
|
||||
" pipe.timestep_characteristic_method()\n",
|
||||
"\n",
|
||||
" # plot some stuff\n",
|
||||
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
||||
" lo_00.remove()\n",
|
||||
" lo_01.remove()\n",
|
||||
" # lo_02.remove()\n",
|
||||
" # plot new pressure and velocity distribution in the pipeline\n",
|
||||
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
||||
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
||||
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
||||
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||
" fig1.canvas.draw()\n",
|
||||
" fig1.tight_layout()\n",
|
||||
" fig1.show()\n",
|
||||
" plt.pause(0.00001) \n",
|
||||
"\n",
|
||||
" # prepare for next loop\n",
|
||||
" p_old = pipe.p_old\n",
|
||||
" v_old = pipe.v_old \n",
|
||||
"\n",
|
||||
" \n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# plot time evolution of boundary pressure and velocity as well as the reservoir level\n",
|
||||
"\n",
|
||||
"fig2,axs2 = plt.subplots(3,2)\n",
|
||||
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,initial_pressure_unit, conversion_pressure_unit)[0])\n",
|
||||
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
|
||||
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,initial_pressure_unit, conversion_pressure_unit)[0])\n",
|
||||
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
|
||||
"axs2[2,0].plot(t_vec,level_vec)\n",
|
||||
"axs2[0,0].set_title('Pressure reservoir')\n",
|
||||
"axs2[0,1].set_title('Velocity reservoir')\n",
|
||||
"axs2[1,0].set_title('Pressure turbine')\n",
|
||||
"axs2[1,1].set_title('Velocity turbine')\n",
|
||||
"axs2[2,0].set_title('Level reservoir')\n",
|
||||
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"axs2[0,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
||||
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"axs2[1,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
||||
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
||||
"axs2[2,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
||||
"axs2[2,0].set_ylabel(r'$h$ [m]')\n",
|
||||
"axs2[2,1].axis('off')\n",
|
||||
"fig2.tight_layout()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.13"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
20
untertweng.txt
Normal file
20
untertweng.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
L = 535 m dn 800 mm
|
||||
478 m dn 1000 mm
|
||||
Ersatzdurchmesser
|
||||
|
||||
h_pipe
|
||||
|
||||
h 851.78 Pegel + Leitungsgefälle
|
||||
Leitungsgefälle: 113
|
||||
|
||||
Fläche 4.25x10.5 + 30m² = 74 m²
|
||||
Pegelminimum: 851.18 m
|
||||
|
||||
Unterwasserpegel 738.56
|
||||
Gesamtfallhöhe = 851.78-738.56
|
||||
|
||||
Rohrreibung: 0.014 f_D = lambda
|
||||
c = 500 m/s
|
||||
|
||||
Q_0 = 100%*0.75+30%*0.75
|
||||
Q_extrem = 30%*0.75
|
||||
Reference in New Issue
Block a user