diff --git a/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb b/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb index 5e144d4..e420f63 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb +++ b/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -71,14 +71,14 @@ "\n", "# for while loop\n", "total_min_level = 0.01 # m\n", - "total_max_time = 100 # s\n", + "total_max_time = 1000 # s\n", "\n", "nt = int(total_max_time//simulation_timestep)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -158,7 +158,7 @@ "10.1" ] }, - "execution_count": 6, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -170,7 +170,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -189,7 +189,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } }, diff --git a/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb b/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb index fd468bd..83c6b8f 100644 --- a/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb +++ b/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ "D = 0.9 # pipe diameter [m]\n", "h_res = 10. # water level in upstream reservoir [m]\n", "n = 50 # number of pipe segments in discretization\n", - "nt = 1000 # number of time steps after initial conditions\n", + "nt = 5000 # number of time steps after initial conditions\n", "f_D = 0.01 # Darcy friction factor\n", "c = 400. # propagation velocity of the pressure wave [m/s]\n", "h_pipe = 105. # hydraulic head without reservoir [m] \n", @@ -57,7 +57,7 @@ "# define constants reservoir\n", "conversion_pressure_unit = 'mWS'\n", "\n", - "area_base = 75. # m²\n", + "area_base = 75. # m²\n", "area_pipe = (D/2)**2*np.pi # m²\n", "critical_level_low = 0. # m\n", "critical_level_high = 100. # m\n", @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -110,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -164,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -250,7 +250,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -269,7 +269,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } }, diff --git a/Turbinen/convergence_turbine.py b/Turbinen/convergence_turbine.py new file mode 100644 index 0000000..5930c3e --- /dev/null +++ b/Turbinen/convergence_turbine.py @@ -0,0 +1,169 @@ +from time import time +import numpy as np +#importing pressure conversion function +import sys +import os +current = os.path.dirname(os.path.realpath(__file__)) +parent = os.path.dirname(current) +sys.path.append(parent) +from functions.pressure_conversion import pressure_conversion + +class Francis_Turbine_test: + # units + # make sure that units and print units are the same + # units are used to label graphs and print units are used to have a bearable format when using pythons print() + density_unit = r'$\mathrm{kg}/\mathrm{m}^3$' + flux_unit = r'$\mathrm{m}^3/\mathrm{s}$' + LA_unit = '%' + pressure_unit = 'Pa' + time_unit = 's' + velocity_unit = r'$\mathrm{m}/\mathrm{s}$' + volume_unit = r'$\mathrm{m}^3$' + + density_unit_print = 'kg/m³' + flux_unit_print = 'm³/s' + LA_unit_print = '%' + pressure_unit_print = 'mWS' + time_unit_print = 's' + velocity_unit_print = 'm/s' + volume_unit_print = 'm³' + + g = 9.81 # m/s² gravitational acceleration + + + # init + def __init__(self, Q_nenn,p_nenn,t_closing=-1.,timestep=-1.): + self.Q_n = Q_nenn # nominal flux + self.p_n = p_nenn # nominal pressure + self.LA_n = 1. # 100% # nominal Leitapparatöffnung + h = pressure_conversion(p_nenn,'Pa','MWs') # nominal pressure in terms of hydraulic head + self.A = Q_nenn/(np.sqrt(2*self.g*h)*0.98) # Ersatzfläche + + self.dt = timestep # simulation timestep + self.t_c = t_closing # closing time + self.d_LA_max_dt = 1/t_closing # maximal change of LA per second + + # initialize for get_info() - parameters will be converted to display -1 if not overwritten + self.p = pressure_conversion(-1,self.pressure_unit_print,self.pressure_unit) + self.Q = -1. + self.LA = -0.01 + + +# setter + def set_LA(self,LA,display_warning=True): + # set Leitapparatöffnung + self.LA = LA + # warn user, that the .set_LA() method should not be used ot set LA manually + if display_warning == True: + print('Consider using the .update_LA() method instead of setting LA manually') + + def set_timestep(self,timestep,display_warning=True): + # set Leitapparatöffnung + self.dt = time + # warn user, that the .set_LA() method should not be used ot set LA manually + if display_warning == True: + print('WARNING: You are changing the timestep of the turbine simulation. This has implications on the simulated closing speed!') + + def set_pressure(self,pressure): + # set pressure in front of the turbine + self.p = pressure + +#getter + def get_current_Q(self): + # return the flux through the turbine, based on the current pressure in front + # of the turbine and the Leitapparatöffnung + if self.p < 0: + self.Q = 0 + else: + self.Q = self.Q_n*(self.LA/self.LA_n)*np.sqrt(self.p/self.p_n) + return self.Q + + def get_current_pressure(self): + return self.p + + def get_current_LA(self): + return self.LA + + def get_info(self, full = False): + new_line = '\n' + p = pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_print) + p_n = pressure_conversion(self.p_n,self.pressure_unit,self.pressure_unit_print) + + + if full == True: + # :<10 pads the self.value to be 10 characters wide + print_str = (f"Turbine has the following attributes: {new_line}" + f"----------------------------- {new_line}" + f"Type = Francis {new_line}" + f"Nominal flux = {self.Q_n:<10} {self.flux_unit_print} {new_line}" + f"Nominal pressure = {round(p_n,3):<10} {self.pressure_unit_print}{new_line}" + f"Nominal LA = {self.LA_n*100:<10} {self.LA_unit_print} {new_line}" + f"Closing time = {self.t_c:<10} {self.time_unit_print} {new_line}" + f"Current flux = {self.Q:<10} {self.flux_unit_print} {new_line}" + f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}" + f"Current LA = {self.LA*100:<10} {self.LA_unit_print} {new_line}" + f"Simulation timestep = {self.dt:<10} {self.time_unit_print} {new_line}" + f"----------------------------- {new_line}") + else: + # :<10 pads the self.value to be 10 characters wide + print_str = (f"The current attributes are: {new_line}" + f"----------------------------- {new_line}" + f"Current flux = {self.Q:<10} {self.flux_unit_print} {new_line}" + f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}" + f"Current LA = {self.LA*100:<10} {self.LA_unit_print} {new_line}" + f"----------------------------- {new_line}") + + print(print_str) + +# methods + def update_LA(self,LA_soll): + # update the Leitappartöffnung and consider the restrictions of the closing time of the turbine + LA_diff = self.LA-LA_soll # calculate the difference to the target LA + LA_diff_max = self.d_LA_max_dt*self.dt # calculate the maximum change in LA based on the given timestep + LA_diff = np.sign(LA_diff)*np.min(np.abs([LA_diff,LA_diff_max])) # calulate the correct change in LA + + LA_new = self.LA-LA_diff + if LA_new < 0.: + LA_new = 0. + elif LA_new > 1.: + LA_new = 1. + self.set_LA(LA_new,display_warning=False) + + def set_steady_state(self,ss_flux,ss_pressure): + # calculate and set steady state LA, that allows the flow of ss_flux at ss_pressure through the + # turbine at the steady state LA + ss_LA = self.LA_n*ss_flux/self.Q_n*np.sqrt(self.p_n/ss_pressure) + if ss_LA < 0 or ss_LA > 1: + raise Exception('LA out of range [0;1]') + self.set_LA(ss_LA,display_warning=False) + + def converge(self,area_pipe,pressure_s2l_node,velocity_s2l_node,alpha,f_D,dt): + eps = 1e-9 + error = 1. + i = 0 + p = pressure_s2l_node + v = velocity_s2l_node + rho = 1000 + g = self.g + c = 400 + D = area_pipe + p_old = self.get_current_pressure() + Q_old = self.get_current_Q() + v_old = Q_old/area_pipe + + + while error > eps: + self.set_pressure(p_old) + Q_new = self.get_current_Q() + v_new = Q_new/area_pipe + p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v + + error = abs(Q_old-Q_new) + Q_old = Q_new.copy() + p_old = p_new.copy() + v_old = v_new.copy() + i = i+1 + if i == 1e6: + print('did not converge') + break + self.Q = Q_new \ No newline at end of file diff --git a/Turbinen/turbine_convergence_test.ipynb b/Turbinen/turbine_convergence_test.ipynb new file mode 100644 index 0000000..5e8c347 --- /dev/null +++ b/Turbinen/turbine_convergence_test.ipynb @@ -0,0 +1,286 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from convergence_turbine import Francis_Turbine_test\n", + "\n", + "#importing pressure conversion function\n", + "import sys\n", + "import os\n", + "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", + "parent = os.path.dirname(current)\n", + "sys.path.append(parent)\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", + "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib qt5\n", + "\n", + "#Turbine\n", + "Q_nenn = 0.85 # m³/s\n", + "p_nenn = pressure_conversion(10.6,'bar','Pa')\n", + "closing_time = 5 #s\n", + "\n", + "#define constants pipe\n", + "\n", + "g = 9.81 # gravitational acceleration [m/s²]\n", + "rho = 1000. # density of water [kg/m³]\n", + "\n", + "L = 1000. # length of pipeline [m]\n", + "D = 0.9 # pipe diameter [m]\n", + "h_res = 10. # water level in upstream reservoir [m]\n", + "n = 50 # number of pipe segments in discretization\n", + "nt = 10000 # number of time steps after initial conditions\n", + "f_D = 0.01 # Darcy friction factor\n", + "c = 400. # propagation velocity of the pressure wave [m/s]\n", + "h_pipe = 105. # hydraulic head without reservoir [m] \n", + "alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n", + "\n", + "\n", + "# preparing the discretization and initial conditions\n", + "initial_flux = 0.8 # m³/s\n", + "initial_level = h_res # m\n", + "dx = L/n # length of each pipe segment\n", + "dt = dx/c # timestep according to method of characterisitics\n", + "nn = n+1 # number of nodes\n", + "pl_vec = np.arange(0,nn,1)*dx # pl = pipe-length. position of the nodes on the pipeline\n", + "t_vec = np.arange(0,nt,1)*dt # time vector\n", + "h_vec = np.arange(0,nn,1)*h_pipe/n # hydraulic head of pipeline at each node\n", + "\n", + "\n", + "# define constants reservoir\n", + "conversion_pressure_unit = 'mWS'\n", + "\n", + "area_base = 75. # m²\n", + "area_pipe = (D/2)**2*np.pi # m²\n", + "critical_level_low = 0. # m\n", + "critical_level_high = 100. # m\n", + "\n", + "# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n", + "nt_eRK4 = 1 # number of simulation steps of reservoir in between timesteps of pipeline \n", + "simulation_timestep = dt/nt_eRK4" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "V = Ausgleichsbecken_class(area_base,area_pipe,critical_level_low,critical_level_high,simulation_timestep)\n", + "V.set_steady_state(initial_flux,initial_level,conversion_pressure_unit)\n", + "\n", + "pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n", + "pipe.set_pressure_propagation_velocity(c)\n", + "pipe.set_number_of_timesteps(nt)\n", + "pipe.set_steady_state(initial_flux,initial_level,area_base,pl_vec,h_vec)\n", + "\n", + "\n", + "initial_pressure_turbine = pipe.get_current_pressure_distribution()[-1]\n", + "T1 = Francis_Turbine_test(Q_nenn,p_nenn,closing_time,timestep=dt)\n", + "T1.set_steady_state(initial_flux,initial_pressure_turbine)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# initialization for timeloop\n", + "\n", + "level_vec = np.zeros_like(t_vec)\n", + "level_vec[0] = V.get_current_level()\n", + "\n", + "# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n", + "v_old = pipe.get_current_velocity_distribution()\n", + "p_old = pipe.get_current_pressure_distribution()\n", + "\n", + "# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n", + " # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n", + " # through the time evolution of the reservoir respectively \n", + " # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n", + "v_boundary_res = np.zeros_like(t_vec)\n", + "v_boundary_tur = np.zeros_like(t_vec)\n", + "p_boundary_res = np.zeros_like(t_vec)\n", + "p_boundary_tur = np.zeros_like(t_vec)\n", + "\n", + "# set the boundary conditions for the first timestep\n", + "v_boundary_res[0] = v_old[0]\n", + "v_boundary_tur[0] = v_old[-1] \n", + "p_boundary_res[0] = p_old[0]\n", + "p_boundary_tur[0] = p_old[-1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "fig1,axs1 = plt.subplots(2,1)\n", + "axs1[0].set_title('Pressure distribution in pipeline')\n", + "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[0].set_ylabel(r'$p$ [mWS]')\n", + "lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa',conversion_pressure_unit),marker='.')\n", + "axs1[0].set_ylim([0.9*np.min(pressure_conversion(p_old,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_old,'Pa',conversion_pressure_unit))])\n", + "\n", + "axs1[1].set_title('Velocity distribution in pipeline')\n", + "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[1].set_ylabel(r'$v$ [m/s]')\n", + "lo_01, = axs1[1].plot(pl_vec,v_old,marker='.')\n", + "# axs1[1].set_ylim([0.9*np.min(v_old),1.1*np.max(v_boundary_res)])\n", + "\n", + "fig1.tight_layout()\n", + "plt.pause(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "for it_pipe in range(1,nt):\n", + "# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n", + " # set initial conditions for the reservoir time evolution calculted with e-RK4\n", + " V.set_pressure(p_old[0])\n", + " V.set_outflux(v_old[0]*area_pipe)\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", + " for it_res in range(nt_eRK4):\n", + " V.timestep_reservoir_evolution() \n", + " level_vec[it_pipe] = V.get_current_level() \n", + "\n", + " \n", + " # set boundary conditions for the next timestep of the characteristic method\n", + " p_boundary_res[it_pipe] = V.get_current_pressure()\n", + " T1.set_pressure(p_old[-1])\n", + " T1.converge(area_pipe,p_old[-2],v_old[-2],alpha,f_D,dt)\n", + " v_boundary_tur[it_pipe] = T1.get_current_Q()/area_pipe\n", + "\n", + " # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n", + " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", + " pipe.v[0] = (pipe.v[0]+V.get_current_outflux()/area_pipe)/2\n", + " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", + " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", + "\n", + " # perform the next timestep via the characteristic method\n", + " pipe.timestep_characteristic_method()\n", + "\n", + " # prepare for next loop\n", + " p_old = pipe.get_current_pressure_distribution()\n", + " v_old = pipe.get_current_velocity_distribution()\n", + "\n", + " # plot some stuff\n", + " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " lo_00.remove()\n", + " lo_01.remove()\n", + " # lo_02.remove()\n", + " # plot new pressure and velocity distribution in the pipeline\n", + " lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa', conversion_pressure_unit),marker='.',c='blue')\n", + " lo_01, = axs1[1].plot(pl_vec,v_old,marker='.',c='blue')\n", + " \n", + " fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n", + " fig1.canvas.draw()\n", + " fig1.tight_layout()\n", + " plt.pause(0.000001)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "fig2,axs2 = plt.subplots(2,2)\n", + "axs2[0,0].set_title('Pressure Reservoir')\n", + "axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit))\n", + "axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[0,0].set_ylabel(r'$p$ [mWS]')\n", + "axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit))])\n", + "\n", + "axs2[0,1].set_title('Velocity Reservoir')\n", + "axs2[0,1].plot(t_vec,v_boundary_res)\n", + "axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[0,1].set_ylim([0.9*np.min(v_boundary_res),1.1*np.max(v_boundary_res)])\n", + "\n", + "axs2[1,0].set_title('Pressure Turbine')\n", + "axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit))\n", + "axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,0].set_ylabel(r'$p$ [mWS]')\n", + "axs2[1,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit))])\n", + "\n", + "axs2[1,1].set_title('Velocity Turbine')\n", + "axs2[1,1].plot(t_vec,v_boundary_tur)\n", + "axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[1,1].set_ylim([0.9*np.min(v_boundary_tur),1.1*np.max(v_boundary_tur)])\n", + "\n", + "fig2.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.plot(level_vec)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untertweng_mit_Pegelregler.ipynb b/Untertweng_mit_Pegelregler.ipynb index 2650f4c..835e3da 100644 --- a/Untertweng_mit_Pegelregler.ipynb +++ b/Untertweng_mit_Pegelregler.ipynb @@ -42,7 +42,7 @@ "\n", "\n", "# pipeline\n", - "L = 535.+478. # length of pipeline [m]\n", + "L = (535.+478.) # length of pipeline [m]\n", "D = 0.9 # pipe diameter [m]\n", "A_pipe = D**2/4*np.pi # pipeline area\n", "h_pipe = 105 # hydraulic head without reservoir [m] \n", @@ -51,7 +51,7 @@ "f_D = 0.014 # Darcy friction factor\n", "c = 500. # propagation velocity of the pressure wave [m/s]\n", "# consider prescribing a total simulation time and deducting the number of timesteps from that\n", - "nt = 4500 # number of time steps after initial conditions\n", + "nt = 9000 # number of time steps after initial conditions\n", "\n", "# derivatives of the pipeline constants\n", "dx = L/n # length of each pipe segment\n", @@ -184,6 +184,7 @@ "metadata": {}, "outputs": [], "source": [ + "error_vec = np.zeros_like(t_vec)\n", "# loop through time steps of the pipeline\n", "for it_pipe in range(1,pipe.nt+1):\n", "\n", @@ -218,6 +219,7 @@ " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", "\n", + " error_vec[it_pipe] = abs(v_boundary_res[it_pipe]-V.get_current_outflux()/A_pipe)\n", "\n", " # perform the next timestep via the characteristic method\n", " pipe.timestep_characteristic_method()\n", @@ -288,6 +290,26 @@ "fig2.tight_layout()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.semilogy(t_vec,error_vec)" + ] } ], "metadata": {