added code to read validation data txts

This commit is contained in:
Brantegger Georg
2022-09-15 11:30:17 +02:00
parent 137182ab10
commit 8917444461
2 changed files with 162 additions and 41 deletions

View File

@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -15,66 +15,187 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n",
"\n",
"def unpack_line(str):\n", "def unpack_line(str):\n",
" time_format = \"%d.%m.%Y %H:%M:%S.%f\"\n",
" index_1 = str.find(';')\n", " index_1 = str.find(';')\n",
" index_2 = str.find(';',index_1)\n", " index_2 = str.find(';',index_1+1)\n",
" index_3 = str.find(';',index_2)\n", " index_3 = str.find(';',index_2+1)\n",
" index_4 = str.find(';',index_3)\n", " index_4 = str.find(';',index_3+1)\n",
" index_5 = str.find(';',index_4)\n", " index_5 = str.find(';',index_4+1)\n",
" parameter = str[0:index_1]\n", " parameter = str[0:index_1]\n",
" value = str[index_2:index_3]\n", " value = float(str[index_2+1:index_3])\n",
" timestamp = str[index_5:] \n", " timestamp = time.mktime(datetime.strptime(str[index_5+1:-2],time_format).timetuple())\n",
" return parameter,value,timestamp\n", " return parameter,value,timestamp\n",
"\n" "\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32mv:\\georg\\Documents\\Persönliche Dokumente\\Arbeit\\Kelag\\Coding\\Python\\DT_Slot_3\\Kelag_DT_Slot_3\\Validation Data\\read_validation_data_long.ipynb Cell 3\u001b[0m in \u001b[0;36m<cell line: 7>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/v%3A/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/Validation%20Data/read_validation_data_long.ipynb#W1sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m timestamp_old \u001b[39m=\u001b[39m \u001b[39m0.\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/v%3A/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/Validation%20Data/read_validation_data_long.ipynb#W1sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39m(\u001b[39m'\u001b[39m\u001b[39mAugust_1_22.txt\u001b[39m\u001b[39m'\u001b[39m) \u001b[39mas\u001b[39;00m txt_file:\n\u001b[1;32m----> <a href='vscode-notebook-cell:/v%3A/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/Validation%20Data/read_validation_data_long.ipynb#W1sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m \u001b[39mfor\u001b[39;00m line \u001b[39min\u001b[39;00m txt_file:\n\u001b[0;32m <a href='vscode-notebook-cell:/v%3A/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/Validation%20Data/read_validation_data_long.ipynb#W1sZmlsZQ%3D%3D?line=8'>9</a>\u001b[0m parameter_new, value_new, timestamp_new \u001b[39m=\u001b[39m unpack_line(line)\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot_3\\lib\\encodings\\cp1252.py:22\u001b[0m, in \u001b[0;36mIncrementalDecoder.decode\u001b[1;34m(self, input, final)\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[39mclass\u001b[39;00m \u001b[39mIncrementalDecoder\u001b[39;00m(codecs\u001b[39m.\u001b[39mIncrementalDecoder):\n\u001b[1;32m---> 22\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdecode\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39minput\u001b[39m, final\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m):\n\u001b[0;32m 23\u001b[0m \u001b[39mreturn\u001b[39;00m codecs\u001b[39m.\u001b[39mcharmap_decode(\u001b[39minput\u001b[39m,\u001b[39mself\u001b[39m\u001b[39m.\u001b[39merrors,decoding_table)[\u001b[39m0\u001b[39m]\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [ "source": [
"df = pd.DataFrame(columns=['Timestamp','M1-LA','M1-Druck','M2-LA','M2-Druck'])\n", "M1_LA_df = pd.DataFrame(columns=['Timestamp','M1-LA'])\n",
"M2_LA_df = pd.DataFrame(columns=['Timestamp','M2-LA'])\n",
"M1_Druck_df = pd.DataFrame(columns=['Timestamp','M1-Druck'])\n",
"M2_Druck_df = pd.DataFrame(columns=['Timestamp','M2-Druck'])\n",
"\n", "\n",
"\n", "\n",
"parameter_old = ''\n", "parameter_old = ''\n",
"value_old = 0.\n",
"timestamp_old = 0.\n",
"value_list = []\n", "value_list = []\n",
"timestamp_list = []\n", "timestamp_list = []\n",
"with open('August_1_22.txt') as txt_file:\n", "with open('Juni_1_22.txt') as txt_file:\n",
" for line in txt_file:\n", " for line in txt_file:\n",
" parameter_new, value_new, timestamp_new = unpack_line(line)\n", " parameter_new, value_new, timestamp_new = unpack_line(line)\n",
" if parameter_new != parameter_old:\n", " if parameter_new != parameter_old:\n",
" if parameter_old islike \"\"\n", " if 'M1' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n",
" M1_LA_df['Timestamp'] = timestamp_list[:]\n",
" M1_LA_df['M1-LA'] = value_list[:]\n",
" if 'M1' in parameter_old and 'Spiraldruck' in parameter_old:\n",
" M1_Druck_df['Timestamp'] = timestamp_list[:]\n",
" M1_Druck_df['M1-Druck'] = value_list[:]\n",
" if 'M2' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n",
" M2_LA_df['Timestamp'] = timestamp_list[:]\n",
" M2_LA_df['M2-LA'] = value_list[:]\n",
" if 'M2' in parameter_old and 'Spiraldruck' in parameter_old:\n",
" M2_Druck_df['Timestamp'] = timestamp_list[:]\n",
" M2_Druck_df['M2-Druck'] = value_list[:]\n",
" \n", " \n",
" value_list = []\n", " value_list = []\n",
" timestamp_list = []\n", " timestamp_list = []\n",
" value_list.append(value_new)\n",
" timestamp_list.append(timestamp_new)\n",
"\n", "\n",
"\n" " parameter_old = parameter_new\n",
" else:\n",
" if value_new != value_list[-1]:\n",
" value_list.append(value_new)\n",
" timestamp_list.append(timestamp_new) \n",
"\n",
" if 'M1' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n",
" M1_LA_df['Timestamp'] = timestamp_list[:]\n",
" M1_LA_df['M1-LA'] = value_list[:]\n",
" if 'M1' in parameter_old and 'Spiraldruck' in parameter_old:\n",
" M1_Druck_df['Timestamp'] = timestamp_list[:]\n",
" M1_Druck_df['M1-Druck'] = value_list[:]\n",
" if 'M2' in parameter_old and 'Stell_Leitapparat' in parameter_old:\n",
" M2_LA_df['Timestamp'] = timestamp_list[:]\n",
" M2_LA_df['M2-LA'] = value_list[:]\n",
" if 'M2' in parameter_old and 'Spiraldruck' in parameter_old:\n",
" M2_Druck_df['Timestamp'] = timestamp_list[:]\n",
" M2_Druck_df['M2-Druck'] = value_list[:]\n",
"\n",
"M1_LA_df.set_index(['Timestamp'],inplace=True)\n",
"M1_Druck_df.set_index(['Timestamp'],inplace=True)\n",
"M2_LA_df.set_index(['Timestamp'],inplace=True)\n",
"M2_Druck_df.set_index(['Timestamp'],inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c96b7430>]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig1=plt.figure()\n",
"plt.plot(M1_LA_df['M1-LA'])\n",
"fig2=plt.figure()\n",
"plt.plot(M1_Druck_df['M1-Druck'])\n",
"fig3=plt.figure()\n",
"plt.plot(M2_LA_df['M2-LA'])\n",
"fig4=plt.figure()\n",
"plt.plot(M2_Druck_df['M2-Druck'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"df = M1_LA_df.join([M2_LA_df,M1_Druck_df,M2_Druck_df],how='outer')\n",
"df.sort_index(axis=0,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c8733c10>]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig1=plt.figure()\n",
"plt.plot(df['M1-LA'])\n",
"fig2=plt.figure()\n",
"plt.plot(df['M1-Druck'])\n",
"fig3=plt.figure()\n",
"plt.plot(df['M2-LA'])\n",
"fig4=plt.figure()\n",
"plt.plot(df['M2-Druck'])"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"t_vec = df.index.to_numpy()\n",
"M1_LA = df['M1-LA'].to_numpy() "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2e6c8563340>]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig5=plt.figure()\n",
"plt.plot(t_vec,M1_LA)"
] ]
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8.13 ('DT_Slot_3')", "display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -93,7 +214,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
} }
} }
}, },

View File

@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -15,14 +15,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"C:\\Users\\georg\\AppData\\Local\\Temp\\ipykernel_34540\\1340824978.py:1: ParserWarning: Length of header or names does not match length of data. This leads to a loss of data with index_col=False.\n", "C:\\Users\\BRANT\\AppData\\Local\\Temp\\7\\ipykernel_7624\\1340824978.py:1: ParserWarning: Length of header or names does not match length of data. This leads to a loss of data with index_col=False.\n",
" raw_data = pd.read_csv(\"2015_08_24 18.00 M1 SS100%.csv\",sep=\";\",header=7,index_col=False)\n" " raw_data = pd.read_csv(\"2015_08_24 18.00 M1 SS100%.csv\",sep=\";\",header=7,index_col=False)\n"
] ]
} }
@@ -43,7 +43,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -55,23 +55,23 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[<matplotlib.lines.Line2D at 0x1f774d49760>]" "[<matplotlib.lines.Line2D at 0x21d60ce24c0>]"
] ]
}, },
"execution_count": 16, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "9c2016ba1ceb4d07a17a483bbf50f9a6", "model_id": "7cd05b652d4a40ca973b5895a8777a64",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
@@ -104,7 +104,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3.8.13 ('DT_Slot_3')", "display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -123,7 +123,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
} }
} }
}, },