small formatting and labeling changes
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -2,3 +2,4 @@
|
|||||||
*__pycache__/
|
*__pycache__/
|
||||||
.vscode/settings.json
|
.vscode/settings.json
|
||||||
*.pyc
|
*.pyc
|
||||||
|
Messing Around/
|
||||||
@@ -45,17 +45,16 @@
|
|||||||
"dx = L/n # length of each pipe segment\n",
|
"dx = L/n # length of each pipe segment\n",
|
||||||
"dt = dx/c # timestep according to method of characterisitics\n",
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
||||||
"nn = n+1 # number of nodes\n",
|
"nn = n+1 # number of nodes\n",
|
||||||
"h_res = 20. # water level in upstream reservoir [m]\n",
|
"initial_level = 20. # water level in upstream reservoir [m]\n",
|
||||||
"p0 = rho*g*h_res-v0**2*rho/2\n",
|
"p0 = rho*g*initial_level-v0**2*rho/2\n",
|
||||||
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
||||||
"t_vec = np.arange(0,nt*dt,dt) # time vector\n",
|
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
||||||
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node np.arange(0,0) does not yield the intended result\n",
|
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
||||||
"v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
|
"v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
|
||||||
"p_init = (rho*g*(h_res+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
"p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# reservoir\n",
|
"# reservoir\n",
|
||||||
"initial_level = h_res # water level in upstream reservoir [m]\n",
|
|
||||||
"# replace influx by vector\n",
|
"# replace influx by vector\n",
|
||||||
"initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n",
|
"initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n",
|
||||||
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
||||||
@@ -137,7 +136,7 @@
|
|||||||
"p_boundary_tur = np.empty_like(t_vec)\n",
|
"p_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
||||||
"level_vec = np.full_like(t_vec,initial_level) # level at the end of each pipeline timestep\n",
|
"level_vec = np.full(nt+1,initial_level) # level at the end of each pipeline timestep\n",
|
||||||
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# set the boudary conditions for the first timestep\n",
|
"# set the boudary conditions for the first timestep\n",
|
||||||
@@ -163,6 +162,7 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
||||||
"fig1,axs1 = plt.subplots(2,1)\n",
|
"fig1,axs1 = plt.subplots(2,1)\n",
|
||||||
|
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
||||||
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
||||||
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||||
@@ -180,11 +180,11 @@
|
|||||||
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
||||||
"# axs1[2].autoscale()\n",
|
"# axs1[2].autoscale()\n",
|
||||||
"fig1.tight_layout()\n",
|
"fig1.tight_layout()\n",
|
||||||
"plt.show()\n",
|
"fig1.show()\n",
|
||||||
"plt.pause(1)\n",
|
"plt.pause(1)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# loop through time steps of the pipeline\n",
|
"# loop through time steps of the pipeline\n",
|
||||||
"for it_pipe in range(1,pipe.nt):\n",
|
"for it_pipe in range(1,pipe.nt+1):\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||||
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
||||||
@@ -222,9 +222,10 @@
|
|||||||
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
||||||
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
||||||
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
||||||
" fig1.suptitle(str(it_pipe))\n",
|
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
" fig1.canvas.draw()\n",
|
" fig1.canvas.draw()\n",
|
||||||
" fig1.tight_layout()\n",
|
" fig1.tight_layout()\n",
|
||||||
|
" fig1.show()\n",
|
||||||
" plt.pause(0.00001) \n",
|
" plt.pause(0.00001) \n",
|
||||||
"\n",
|
"\n",
|
||||||
" # prepare for next loop\n",
|
" # prepare for next loop\n",
|
||||||
|
|||||||
@@ -2,10 +2,11 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"# imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"\n",
|
"\n",
|
||||||
@@ -16,7 +17,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -24,19 +25,22 @@
|
|||||||
"# pipeline\n",
|
"# pipeline\n",
|
||||||
"L = 1000. # length of pipeline [m]\n",
|
"L = 1000. # length of pipeline [m]\n",
|
||||||
"D = 1. # pipe diameter [m]\n",
|
"D = 1. # pipe diameter [m]\n",
|
||||||
"h_pipe = 200 # hydraulic head without reservoir [m] \n",
|
"h_pipe = 0 # hydraulic head without reservoir [m] \n",
|
||||||
"Q0 = 2. # initial flow in whole pipe [m³/s]\n",
|
"Q0 = 2. # initial flow in whole pipe [m³/s]\n",
|
||||||
"f_D = 0.1 # Darcy friction factor\n",
|
"f_D = 0.05 # Darcy friction factor\n",
|
||||||
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
||||||
|
"n = 100 # number of pipe segments in discretization\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
||||||
|
"nt = 1000 # number of time steps after initial conditions\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# reservoir\n",
|
"# reservoir\n",
|
||||||
"area_base = 20. # total base are of the cuboid reservoir [m²] \n"
|
"area_base = 1. # total base are of the cuboid reservoir [m²] \n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -49,27 +53,24 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
"A_pipe = D**2/4*np.pi # pipeline area\n",
|
||||||
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
||||||
"n = 10 # number of pipe segments in discretization\n",
|
|
||||||
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
|
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
|
||||||
"v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
|
"v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
|
||||||
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
|
"\n",
|
||||||
"nt = 100 # number of time steps after initial conditions\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# derivatives of the pipeline constants\n",
|
"# derivatives of the pipeline constants\n",
|
||||||
"dx = L/n # length of each pipe segment\n",
|
"dx = L/n # length of each pipe segment\n",
|
||||||
"dt = dx/c # timestep according to method of characterisitics\n",
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
||||||
"nn = n+1 # number of nodes\n",
|
"nn = n+1 # number of nodes\n",
|
||||||
"h_res = 20. # water level in upstream reservoir [m]\n",
|
"initial_level = 20. # water level in upstream reservoir [m]\n",
|
||||||
"p0 = rho*g*h_res-v0**2*rho/2\n",
|
"p0 = rho*g*initial_level-v0**2*rho/2\n",
|
||||||
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
||||||
"t_vec = np.arange(0,nt*dt,dt) # time vector\n",
|
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
|
||||||
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node np.arange(0,0) does not yield the intended result\n",
|
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
|
||||||
"v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
|
"v_init = np.full(nn,Q0/A_pipe) # initial velocity distribution in pipeline\n",
|
||||||
"p_init = (rho*g*(h_res+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
"p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# reservoir\n",
|
"# reservoir\n",
|
||||||
"initial_level = h_res # water level in upstream reservoir [m]\n",
|
|
||||||
"# replace influx by vector\n",
|
"# replace influx by vector\n",
|
||||||
"initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n",
|
"initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n",
|
||||||
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
"initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
|
||||||
@@ -88,7 +89,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -113,7 +114,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -133,7 +134,7 @@
|
|||||||
"p_boundary_tur = np.empty_like(t_vec)\n",
|
"p_boundary_tur = np.empty_like(t_vec)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
|
||||||
"level_vec = np.full_like(t_vec,initial_level) # level at the end of each pipeline timestep\n",
|
"level_vec = np.full(nt+1,initial_level) # level at the end of each pipeline timestep\n",
|
||||||
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
"level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# set the boudary conditions for the first timestep\n",
|
"# set the boudary conditions for the first timestep\n",
|
||||||
@@ -145,29 +146,31 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# for demoing II\n",
|
"# for demoing II\n",
|
||||||
"v_boundary_tur[0] = v_old[-1] \n",
|
"v_boundary_tur[0] = v_old[-1] \n",
|
||||||
"v_boundary_tur[1:] = 0 # instantaneous closing\n",
|
"v_boundary_tur[1:] = 0 # instantaneous closing\n",
|
||||||
"# v_boundary_tur[0:20] = np.linspace(v_old[-1],0,20) # overwrite for finite closing time - linear case\n",
|
"\n",
|
||||||
"const = int(np.min([100,round(nt/1.1)]))\n",
|
"const = int(np.min([1000,round(nt/1.1)])) \n",
|
||||||
"v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi/5)**2"
|
"# v_boundary_tur[0:const] = np.linspace(v_old[-1],0,const) # linear closing\n",
|
||||||
|
"# v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi)**2 # oscillating"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"%matplotlib qt5\n",
|
|
||||||
"# time loop\n",
|
"# time loop\n",
|
||||||
|
"%matplotlib qt5\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
|
||||||
"fig1,axs1 = plt.subplots(2,1)\n",
|
"fig1,axs1 = plt.subplots(2,1)\n",
|
||||||
|
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
||||||
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
||||||
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
||||||
@@ -185,16 +188,17 @@
|
|||||||
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
"# lo_02, = axs1[2].plot(level_vec_2)\n",
|
||||||
"# axs1[2].autoscale()\n",
|
"# axs1[2].autoscale()\n",
|
||||||
"fig1.tight_layout()\n",
|
"fig1.tight_layout()\n",
|
||||||
"plt.show()\n",
|
"fig1.show()\n",
|
||||||
"plt.pause(1)\n",
|
"plt.pause(2)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# loop through time steps of the pipeline\n",
|
"# loop through time steps of the pipeline\n",
|
||||||
"for it_pipe in range(1,pipe.nt):\n",
|
"for it_pipe in range(1,pipe.nt+1):\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
||||||
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
" # set initial conditions for the reservoir time evolution calculated with e-RK4\n",
|
||||||
" V.pressure = p_old[0]\n",
|
" V.pressure = p_old[0]\n",
|
||||||
" V.outflux = v_old[0]\n",
|
" V.outflux = v_old[0]\n",
|
||||||
|
" # V.influx = v_boundary_tur[it_pipe]\n",
|
||||||
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
||||||
" for it_res in range(nt_eRK4):\n",
|
" for it_res in range(nt_eRK4):\n",
|
||||||
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
" V.e_RK_4() # call e-RK4 to update outflux\n",
|
||||||
@@ -206,10 +210,12 @@
|
|||||||
" break \n",
|
" break \n",
|
||||||
" level_vec[it_pipe] = V.level \n",
|
" level_vec[it_pipe] = V.level \n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"\n",
|
||||||
" # set boundary conditions for the next timestep of the characteristic method\n",
|
" # set boundary conditions for the next timestep of the characteristic method\n",
|
||||||
" p_boundary_res[it_pipe] = rho*g*V.level-v_old[1]**2*rho/2\n",
|
" p_boundary_res[it_pipe] = rho*g*V.level-v_old[1]**2*rho/2\n",
|
||||||
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
" v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n",
|
||||||
" +dt*g*np.sin(alpha)\n",
|
" +dt*g*np.sin(alpha)\n",
|
||||||
|
" \n",
|
||||||
"\n",
|
"\n",
|
||||||
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
||||||
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
" pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
||||||
@@ -227,9 +233,10 @@
|
|||||||
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit)[0],marker='.',c='blue')\n",
|
||||||
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
|
||||||
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
|
||||||
" fig1.suptitle(str(it_pipe))\n",
|
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
|
||||||
" fig1.canvas.draw()\n",
|
" fig1.canvas.draw()\n",
|
||||||
" fig1.tight_layout()\n",
|
" fig1.tight_layout()\n",
|
||||||
|
" fig1.show()\n",
|
||||||
" plt.pause(0.00001) \n",
|
" plt.pause(0.00001) \n",
|
||||||
"\n",
|
"\n",
|
||||||
" # prepare for next loop\n",
|
" # prepare for next loop\n",
|
||||||
@@ -242,7 +249,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 13,
|
"execution_count": 8,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
|||||||
Reference in New Issue
Block a user