fix for numerical runaway of rounding errors
due to turbine-pipeline interatction via a convergence method in the turbine and a "damping" trick on the reservoir velocity plus: code cleanup with consistent naming of variables
This commit is contained in:
@@ -15,10 +15,10 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
|
||||
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
|
||||
# adapted for a pressurized pipeline into which the reservoir effuses
|
||||
# and flow direction
|
||||
# x_out ... effusion velocity
|
||||
# x_out ... effusion velocity
|
||||
# h ... level in the reservoir
|
||||
# A_a ... Outflux_Area
|
||||
# A ... Reservoir_Area
|
||||
# A_a ... Area_outflux
|
||||
# A ... Area_reservoir_base
|
||||
# g ... gravitational acceleration
|
||||
# rho ... density of the liquid in the reservoir
|
||||
f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)
|
||||
@@ -28,168 +28,202 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
|
||||
class Ausgleichsbecken_class:
|
||||
# units
|
||||
# make sure that units and print units are the same
|
||||
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
level_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
level_unit = 'm'
|
||||
pressure_unit = 'Pa'
|
||||
time_unit = 's'
|
||||
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
|
||||
area_unit_print = 'm²'
|
||||
area_outflux_unit_print = 'm²'
|
||||
density_unit_print = 'kg/m³'
|
||||
flux_unit_print = 'm³/s'
|
||||
level_unit_print = 'm'
|
||||
pressure_unit_print = '--' # will be set by .set_pressure() method
|
||||
time_unit_print = 's'
|
||||
velocity_unit_print = 'm/s'
|
||||
volume_unit_print = 'm³'
|
||||
area_unit_disp = 'm²'
|
||||
area_outflux_unit_disp = 'm²'
|
||||
density_unit_disp = 'kg/m³'
|
||||
flux_unit_disp = 'm³/s'
|
||||
level_unit_disp = 'm'
|
||||
time_unit_disp = 's'
|
||||
velocity_unit_disp = 'm/s'
|
||||
volume_unit_disp = 'm³'
|
||||
|
||||
g = 9.81 # m/s² gravitational acceleration
|
||||
|
||||
|
||||
# init
|
||||
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1,rho = 1000):
|
||||
self.area = area # base area of the rectangular structure
|
||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||
self.density = rho # density of the liquid in the system
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.timestep = timestep # timestep of the simulation
|
||||
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
|
||||
self.area = area # base area of the cuboid reservoir
|
||||
self.area_out = area_outflux # area of the outlet towards the pipeline
|
||||
self.density = rho # density of the liquid in the system
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
|
||||
self.timestep = timestep # timestep in the time evolution method
|
||||
|
||||
# initialize for get_info
|
||||
self.influx = "--"
|
||||
self.level = "--"
|
||||
self.outflux = "--"
|
||||
self.volume = "--"
|
||||
self.influx = "--"
|
||||
self.outflux = "--"
|
||||
self.level = "--"
|
||||
self.pressure = "--"
|
||||
self.volume = "--"
|
||||
|
||||
|
||||
# setter
|
||||
def set_initial_level(self,initial_level):
|
||||
# sets the level in the reservoir and should only be called during initialization
|
||||
# sets the initial level in the reservoir and should only be called during initialization
|
||||
if self.level == '--':
|
||||
self.level = initial_level
|
||||
self.update_volume(set_flag=True)
|
||||
else:
|
||||
raise Exception('Initial level was already set once. Use the .update_level(self,timestep) method to update level based on net flux.')
|
||||
raise Exception('Initial level was already set once. Use the .update_level(self,timestep,set_flag=True) method to update level based on net flux.')
|
||||
|
||||
def set_level(self,level):
|
||||
self.level = level
|
||||
def set_initial_pressure(self,initial_pressure):
|
||||
# sets the initial static pressure present at the outlet of the reservoir and should only be called during initialization
|
||||
if self.pressure == '--':
|
||||
self.pressure = initial_pressure
|
||||
else:
|
||||
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.')
|
||||
|
||||
def set_influx(self,influx):
|
||||
# sets influx to the reservoir in m³/s
|
||||
# positive influx means that liquid flows into the reservoir
|
||||
self.influx = influx
|
||||
|
||||
def set_outflux(self,outflux):
|
||||
def set_outflux(self,outflux,display_warning=True):
|
||||
# sets outflux to the reservoir in m³/s
|
||||
# positive outflux means that liquid flows out of reservoir the reservoir
|
||||
if display_warning == True:
|
||||
print('You are setting the outflux from the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the timestep_reservoir_evolution() method instead.')
|
||||
self.outflux = outflux
|
||||
|
||||
def set_initial_pressure(self,pressure,display_pressure_unit):
|
||||
# sets the static pressure present at the outlet of the reservoir
|
||||
# units are used to convert and display the pressure
|
||||
self.pressure = pressure
|
||||
self.pressure_unit_print = display_pressure_unit
|
||||
def set_level(self,level,display_warning=True):
|
||||
# sets level in the reservoir in m
|
||||
if display_warning == True:
|
||||
print('You are setting the level of the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the update_level() method instead.')
|
||||
self.level = level
|
||||
|
||||
def set_pressure(self,pressure):
|
||||
# sets the static pressure present at the outlet of the reservoir
|
||||
self.pressure = pressure
|
||||
def set_pressure(self,pressure,display_warning=True):
|
||||
# sets pressure in the pipeline just below the reservoir in Pa
|
||||
if display_warning == True:
|
||||
print('You are setting the pressure below the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the update_pressure() method instead.')
|
||||
self.pressure = pressure
|
||||
|
||||
def set_steady_state(self,ss_influx,ss_level,display_pressure_unit):
|
||||
def set_volume(self,volume,display_warning=True):
|
||||
if display_warning == True:
|
||||
print('You are setting the volume in the reservoir manually. \n \
|
||||
This is not an intended use of this method. \n \
|
||||
Refer to the .update_volume() or set_initial_level() method instead.')
|
||||
self.volume = volume
|
||||
|
||||
def set_steady_state(self,ss_influx,ss_level):
|
||||
# set the steady state (ss) condition in which the net flux is zero
|
||||
# set pressure acting on the outflux area so that the level stays constant
|
||||
ss_outflux = ss_influx
|
||||
ss_influx_vel = abs(ss_influx/self.area)
|
||||
ss_outflux_vel = abs(ss_outflux/self.area_outflux)
|
||||
ss_outflux_vel = abs(ss_outflux/self.area_out)
|
||||
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
|
||||
|
||||
self.set_influx(ss_influx)
|
||||
self.set_initial_level(ss_level)
|
||||
self.set_initial_pressure(ss_pressure,display_pressure_unit)
|
||||
self.set_outflux(ss_outflux)
|
||||
self.set_initial_pressure(ss_pressure)
|
||||
self.set_outflux(ss_outflux,display_warning=False)
|
||||
|
||||
# getter
|
||||
def get_info(self, full = False):
|
||||
new_line = '\n'
|
||||
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_print)
|
||||
outflux_vel = self.outflux/self.area_outflux
|
||||
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
|
||||
outflux_vel = self.outflux/self.area_out
|
||||
|
||||
|
||||
if full == True:
|
||||
# :<10 pads the self.value to be 10 characters wide
|
||||
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
|
||||
f"----------------------------- {new_line}"
|
||||
f"Base area = {self.area:<10} {self.area_unit_print} {new_line}"
|
||||
f"Outflux area = {round(self.area_outflux,3):<10} {self.area_outflux_unit_print} {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
||||
f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}"
|
||||
f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}"
|
||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
||||
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
||||
f"Base area = {self.area:<10} {self.area_unit_disp} {new_line}"
|
||||
f"Outflux area = {round(self.area_out,3):<10} {self.area_out_unit_disp} {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
||||
f"Critical level low = {self.level_min:<10} {self.level_unit_disp} {new_line}"
|
||||
f"Critical level high = {self.level_max:<10} {self.level_unit_disp} {new_line}"
|
||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
||||
f"Simulation timestep = {self.timestep:<10} {self.time_unit_disp} {new_line}"
|
||||
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
|
||||
f"----------------------------- {new_line}")
|
||||
else:
|
||||
# :<10 pads the self.value to be 10 characters wide
|
||||
print_str = (f"The current attributes are: {new_line}"
|
||||
f"----------------------------- {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
||||
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
||||
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
|
||||
f"Current volume = {self.volume:<10} {self.volume_unit_disp} {new_line}"
|
||||
f"Current influx = {self.influx:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux = {self.outflux:<10} {self.flux_unit_disp} {new_line}"
|
||||
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
|
||||
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
|
||||
f"----------------------------- {new_line}")
|
||||
|
||||
print(print_str)
|
||||
|
||||
def get_current_level(self):
|
||||
return self.level
|
||||
|
||||
def get_current_influx(self):
|
||||
return self.influx
|
||||
|
||||
def get_current_outflux(self):
|
||||
return self.outflux
|
||||
|
||||
def get_current_level(self):
|
||||
return self.level
|
||||
|
||||
def get_current_pressure(self):
|
||||
return self.pressure
|
||||
|
||||
def get_current_volume(self):
|
||||
return self.volume
|
||||
|
||||
|
||||
# methods
|
||||
|
||||
def update_level(self,timestep):
|
||||
# update methods
|
||||
def update_level(self,timestep,set_flag=False):
|
||||
# update level based on net flux and timestep by calculating the volume change in
|
||||
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
||||
|
||||
# cannot set new level directly in this method, because it gets called to calcuate during the Runge Kutta
|
||||
# to calculate a ficticious level at half the timestep
|
||||
net_flux = self.influx-self.outflux
|
||||
delta_level = net_flux*timestep/self.area
|
||||
new_level = (self.level+delta_level)
|
||||
return new_level
|
||||
level_new = (self.level+delta_level)
|
||||
if set_flag == True:
|
||||
self.set_level(level_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
return level_new
|
||||
|
||||
def update_pressure(self):
|
||||
def update_pressure(self,set_flag=False):
|
||||
influx_vel = abs(self.influx/self.area)
|
||||
outflux_vel = abs(self.outflux/self.area_outflux)
|
||||
outflux_vel = abs(self.outflux/self.area_out)
|
||||
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
|
||||
return p_new
|
||||
if set_flag ==True:
|
||||
self.set_pressure(p_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
return p_new
|
||||
|
||||
def update_volume(self,set_flag=False):
|
||||
volume_new = self.level*self.area
|
||||
if set_flag == True:
|
||||
self.set_volume(volume_new,display_warning=False)
|
||||
elif set_flag == False:
|
||||
return volume_new
|
||||
|
||||
#methods
|
||||
def timestep_reservoir_evolution(self):
|
||||
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
||||
dt = self.timestep
|
||||
rho = self.density
|
||||
g = self.g
|
||||
A = self.area
|
||||
A_a = self.area_outflux
|
||||
A_a = self.area_out
|
||||
yn = self.outflux/A_a # outflux velocity
|
||||
h = self.level
|
||||
h_hs = self.update_level(dt/2)
|
||||
@@ -203,10 +237,7 @@ class Ausgleichsbecken_class:
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
||||
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
||||
|
||||
new_outflux = ynp1*A_a
|
||||
new_level = self.update_level(dt)
|
||||
new_pressure = self.update_pressure()
|
||||
|
||||
self.set_outflux(new_outflux)
|
||||
self.set_level(new_level)
|
||||
self.set_pressure(new_pressure)
|
||||
self.set_outflux(ynp1*A_a,display_warning=False)
|
||||
self.update_level(dt,set_flag=True)
|
||||
self.update_volume(set_flag=True)
|
||||
self.update_pressure(set_flag=True)
|
||||
|
||||
Reference in New Issue
Block a user