Merge branch 'Dev'

This commit is contained in:
Brantegger Georg
2023-02-06 11:05:39 +01:00
156 changed files with 7126042 additions and 296 deletions

7
.gitignore vendored
View File

@@ -1,7 +1,10 @@
2bignored.txt
*__pycache__/ *__pycache__/
.vscode/settings.json .vscode/settings.json
*.pyc *.pyc
Messing Around/ Messing Around/
Messing Around/messy_nb.ipynb
Validation Data/ Validation Data/
Druckrohrleitung/Gif Plots
Simulation Hammer/
Simulation Arriach/
log.txt

View File

@@ -1,20 +1,26 @@
from logging import exception # import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np import numpy as np
#importing pressure conversion function #importing pressure conversion function
import sys
import os
current = os.path.dirname(os.path.realpath(__file__)) current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current) parent = os.path.dirname(current)
sys.path.append(parent) sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion from functions.pressure_conversion import pressure_conversion
def FODE_function(x_out,h,A,A_a,p,rho,g): def FODE_function(x_out,h,A,A_a,p,rho,g):
# (FODE ... first order differential equation) # (FODE ... first order differential equation)
# describes the change in outflux velocity from a reservoir
# based on the outflux formula by Andreas Malcherek # based on the outflux formula by Andreas Malcherek
# https://www.youtube.com/watch?v=8HO2LwqOhqQ # https://www.youtube.com/watch?v=8HO2LwqOhqQ
# adapted for a pressurized pipeline into which the reservoir effuses # adapted for a pressurized pipeline into which the reservoir effuses
# and flow direction # and flow direction
# see documentation in word-file
# x_out ... effusion velocity # x_out ... effusion velocity
# h ... level in the reservoir # h ... level in the reservoir
# A_a ... Area_outflux # A_a ... Area_outflux
@@ -27,14 +33,14 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
class Ausgleichsbecken_class: class Ausgleichsbecken_class:
# units # units
# make sure that units and display units are the same # make sure that units and display units are the same!
# units are used to label graphs and disp units are used to have a bearable format when using pythons print() # units are used to label graphs and disp units are used to have good formatting when using pythons print()
area_unit = r'$\mathrm{m}^2$' area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$' area_outflux_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$' density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$' flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm' level_unit = 'm'
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion pressure_unit = 'Pa' # !DO NOT CHANGE! needed for pressure conversion
time_unit = 's' time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
volume_unit = r'$\mathrm{m}^3$' volume_unit = r'$\mathrm{m}^3$'
@@ -53,6 +59,7 @@ class Ausgleichsbecken_class:
# init # init
# see docstring below
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.): def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
""" """
Creates a reservoir with given attributes in this order: \n Creates a reservoir with given attributes in this order: \n
@@ -60,8 +67,8 @@ class Ausgleichsbecken_class:
Outflux Area [m²] \n Outflux Area [m²] \n
Simulation timestep [s] \n Simulation timestep [s] \n
Pressure unit for displaying [string] \n Pressure unit for displaying [string] \n
Minimal level [m] \n Minimum level [m] \n
Maximal level [m] \n Maximum level [m] \n
Density of the liquid [kg/m³] \n Density of the liquid [kg/m³] \n
""" """
#set initial attributes #set initial attributes
@@ -73,7 +80,8 @@ class Ausgleichsbecken_class:
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
self.timestep = timestep # timestep in the time evolution method self.timestep = timestep # timestep in the time evolution method
# initialize for get_info() (if get_info() gets called before set_steady_state() is executed) # initialize for get_info() (if get_info() gets called before set_steady_state() was ever executed)
# is also used to check if set_steady_state() was ever executed
self.influx = -np.inf self.influx = -np.inf
self.outflux = -np.inf self.outflux = -np.inf
self.level = -np.inf self.level = -np.inf
@@ -95,7 +103,7 @@ class Ausgleichsbecken_class:
if self.pressure == -np.inf: if self.pressure == -np.inf:
self.pressure = initial_pressure self.pressure = initial_pressure
else: else:
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.') raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based on current level.')
def set_influx(self,influx): def set_influx(self,influx):
# sets influx to the reservoir in m³/s # sets influx to the reservoir in m³/s
@@ -141,7 +149,7 @@ class Ausgleichsbecken_class:
ss_outflux = ss_influx ss_outflux = ss_influx
ss_influx_vel = abs(ss_influx/self.area) ss_influx_vel = abs(ss_influx/self.area)
ss_outflux_vel = abs(ss_outflux/self.area_out) ss_outflux_vel = abs(ss_outflux/self.area_out)
# see confluence doc for explaination on how to arrive at the ss pressure formula # see word document for explaination on how to arrive at the ss pressure formula
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel) ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
# use setter methods to set the attributes to their steady state values # use setter methods to set the attributes to their steady state values
@@ -153,6 +161,7 @@ class Ausgleichsbecken_class:
# getter - return attributes # getter - return attributes
def get_info(self, full = False): def get_info(self, full = False):
# prints out the info on the current state of the reservoir # prints out the info on the current state of the reservoir
# full = True gives more info
new_line = '\n' new_line = '\n'
if self.pressure != np.inf: if self.pressure != np.inf:
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp) p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
@@ -188,6 +197,7 @@ class Ausgleichsbecken_class:
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}" f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"----------------------------- {new_line}") f"----------------------------- {new_line}")
# print the info to console
print(print_str) print(print_str)
def get_current_influx(self): def get_current_influx(self):
@@ -208,10 +218,15 @@ class Ausgleichsbecken_class:
# update methods - update attributes based on some parameter # update methods - update attributes based on some parameter
def update_level(self,timestep,set_flag=False): def update_level(self,timestep,set_flag=False):
# update level based on net flux and timestep by calculating the volume change in # update level based on net flux and timestep by calculating the volume change in
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir # the timestep and then convert the new volume to a level by assuming a cuboid reservoir
# there is no call of the update_volume() function because I need the updated level from half a timestep in the reservoir evolution
# if update_volume() was called within this function, the script would produce wrong results.
net_flux = self.influx-self.outflux net_flux = self.influx-self.outflux
delta_level = net_flux*timestep/self.area delta_level = net_flux*timestep/self.area
level_new = (self.level+delta_level) level_new = (self.level+delta_level)
# raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop
if level_new < 0.01:
raise Exception('Reservoir ran emtpy')
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion # set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
if set_flag == True: if set_flag == True:
self.set_level(level_new,display_warning=False) self.set_level(level_new,display_warning=False)
@@ -220,7 +235,7 @@ class Ausgleichsbecken_class:
def update_pressure(self,set_flag=False): def update_pressure(self,set_flag=False):
# update pressure based on level and flux velocities # update pressure based on level and flux velocities
# see confluence doc for explaination # see word document for explaination
influx_vel = abs(self.influx/self.area) influx_vel = abs(self.influx/self.area)
outflux_vel = abs(self.outflux/self.area_out) outflux_vel = abs(self.outflux/self.area_out)
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel) p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
@@ -241,6 +256,7 @@ class Ausgleichsbecken_class:
#methods #methods
def timestep_reservoir_evolution(self): def timestep_reservoir_evolution(self):
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir # update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
# solve the FODE of the outflux velocity for one timestep using explicit four step Runge-Kutta method
# get some variables # get some variables
dt = self.timestep dt = self.timestep

View File

@@ -1,13 +1,18 @@
# import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np import numpy as np
#importing pressure conversion function #importing pressure conversion function
import sys
import os
current = os.path.dirname(os.path.realpath(__file__)) current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current) parent = os.path.dirname(current)
sys.path.append(parent) sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion from functions.pressure_conversion import pressure_conversion
class Druckrohrleitung_class: class Druckrohrleitung_class:
# units # units
# make sure that units and display units are the same # make sure that units and display units are the same
@@ -37,6 +42,7 @@ class Druckrohrleitung_class:
g = 9.81 # m/s² gravitational acceleration g = 9.81 # m/s² gravitational acceleration
# init # init
# see docstring below
def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000): def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
""" """
Creates a reservoir with given attributes in this order: \n Creates a reservoir with given attributes in this order: \n
@@ -152,6 +158,7 @@ class Druckrohrleitung_class:
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A) ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses # the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
# dynamic pressure does not play a role, because it has the same influence on both sides of the equation (constant flow velocity) and therefore cancels out
ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2) ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2)
# set the initial conditions # set the initial conditions
@@ -160,6 +167,7 @@ class Druckrohrleitung_class:
# getter - return attributes # getter - return attributes
def get_info(self): def get_info(self):
# prints out the info on the current state of the reservoir
new_line = '\n' new_line = '\n'
angle_deg = round(self.angle/np.pi*180,3) angle_deg = round(self.angle/np.pi*180,3)
@@ -180,8 +188,11 @@ class Druckrohrleitung_class:
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}" f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}" f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
f"----------------------------- {new_line}" f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object") f"Velocity and pressure distribution are vectors and are accessible via the {new_line} \
get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. {new_line} \
See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.")
# print the info to console
print(print_str) print(print_str)
def get_current_pressure_distribution(self,disp_flag=False): def get_current_pressure_distribution(self,disp_flag=False):
@@ -198,12 +209,14 @@ class Druckrohrleitung_class:
return self.v*self.A return self.v*self.A
def get_lowest_pressure_per_node(self,disp_flag=False): def get_lowest_pressure_per_node(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp) return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa elif disp_flag == False: # stay in Pa
return self.p_min return self.p_min
def get_highest_pressure_per_node(self,disp_flag=False): def get_highest_pressure_per_node(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp) return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa elif disp_flag == False: # stay in Pa
@@ -242,7 +255,7 @@ class Druckrohrleitung_class:
g = self.g # graviational acceleration g = self.g # graviational acceleration
alpha = self.angle # pipeline angle alpha = self.angle # pipeline angle
# Vectorize this loop? # Vectorized loop see below
for i in range(1,nn-1): for i in range(1,nn-1):
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \ self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1]) +dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
@@ -263,6 +276,7 @@ class Druckrohrleitung_class:
self.v_old = self.v.copy() self.v_old = self.v.copy()
def timestep_characteristic_method_vectorized(self): def timestep_characteristic_method_vectorized(self):
# faster then above
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones # use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand # they are set with the .set_boundary_conditions_next_timestep() method beforehand

View File

@@ -70,7 +70,7 @@
" # for general simulation\n", " # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n", "flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 10. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "simTime_target = 3. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
] ]
@@ -79,6 +79,23 @@
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"61.1829727786757\n"
]
}
],
"source": [
"print(pressure_conversion(600000,'Pa','mWS'))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# create objects\n", "# create objects\n",
@@ -94,11 +111,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 13,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# initialization for timeloop\n", "# initialization for timeloop\n",
"reservoir.set_influx = 0.\n",
"\n", "\n",
"level_vec = np.zeros_like(t_vec)\n", "level_vec = np.zeros_like(t_vec)\n",
"level_vec[0] = reservoir.get_current_level()\n", "level_vec[0] = reservoir.get_current_level()\n",
@@ -106,6 +124,7 @@
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n", "# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
"v_old = pipe.get_current_velocity_distribution()\n", "v_old = pipe.get_current_velocity_distribution()\n",
"p_old = pipe.get_current_pressure_distribution()\n", "p_old = pipe.get_current_pressure_distribution()\n",
"p_0 = pipe.get_initial_pressure_distribution()\n",
"\n", "\n",
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n", "# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n", " # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
@@ -135,30 +154,6 @@
"# v_boundary_tur[np.argmin(np.abs(t_vec-1)):] = 0" "# v_boundary_tur[np.argmin(np.abs(t_vec-1)):] = 0"
] ]
}, },
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1efa21574f0>]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%matplotlib qt5\n",
"fig = plt.figure()\n",
"plt.plot(v_trans)\n",
"fig = plt.figure()\n",
"plt.plot(t_vec,v_boundary_tur)"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 14,
@@ -166,21 +161,35 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n", "%matplotlib qt5\n",
"fig1,axs1 = plt.subplots(2,1)\n", "# Time loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1, figsize=(16,9))\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n", "axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ [mWS]')\n", "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].autoscale()\n", "axs1[0].set_ylim([-2,200])\n",
"lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa',pUnit_conv),marker='.')\n", "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"\n",
"axs1[1].set_title('Velocity distribution in pipeline')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$v$ [m/s]')\n", "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n", "axs1[1].set_ylim([-76,76])\n",
"# axs1[1].autoscale()\n", "axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[1].set_ylim([-1.5,1.5])\n", "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1.5,1.5])\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_velocity_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_velocity_per_node(),c='red')\n",
"\n", "\n",
"fig1.tight_layout()\n", "fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)" "plt.pause(1)"
] ]
}, },
@@ -219,17 +228,38 @@
" # plot some stuff\n", " # plot some stuff\n",
" if it_pipe%100 == 0:\n", " if it_pipe%100 == 0:\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_00.remove()\n", " lo_0.remove()\n",
" lo_01.remove()\n", " lo_0min.remove()\n",
" # lo_02.remove()\n", " lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n", " # plot new pressure and velocity distribution in the pipeline\n",
" lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa', pUnit_conv),marker='.',c='blue')\n", " lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.',c='blue')\n", " lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" \n", " lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n", " lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe]-1,2))+ ' s / '+str(round(t_vec[-1]-1,2)) + ' s' )\n",
" fig1.canvas.draw()\n", " fig1.canvas.draw()\n",
" fig1.tight_layout()\n", " fig1.tight_layout()\n",
" plt.pause(0.000001)" " fig1.show()\n",
" # if int(it_pipe/100) < 10:\n",
" # figname = 'GIF Plots\\ GIF00'+str(int(it_pipe/100))+'.png'\n",
" # elif int(it_pipe/100) < 100:\n",
" # figname = 'GIF Plots\\ GIF0'+str(int(it_pipe/100))+'.png'\n",
" # else:\n",
" # figname = 'GIF Plots\\ GIF'+str(int(it_pipe/100))+'.png'\n",
" # print(figname)\n",
" # fig1.savefig(fname=figname)\n",
" plt.pause(0.000001) "
] ]
}, },
{ {
@@ -245,11 +275,11 @@
"axs2[0,0].set_ylabel(r'$p$ [mWS]')\n", "axs2[0,0].set_ylabel(r'$p$ [mWS]')\n",
"axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))])\n", "axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))])\n",
"\n", "\n",
"axs2[1,1].set_title('Velocity Reservoir')\n", "axs2[1,0].set_title('Velocity Reservoir')\n",
"axs2[1,1].plot(t_vec,v_boundary_res)\n", "axs2[1,0].plot(t_vec,v_boundary_res)\n",
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", "axs2[1,0].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"axs2[1,1].set_ylim([-1.1*np.max(v_boundary_res),1.1*np.max(v_boundary_res)])\n", "axs2[1,0].set_ylim([-1.1*np.max(v_boundary_res),1.1*np.max(v_boundary_res)])\n",
"\n", "\n",
"axs2[0,1].set_title('Pressure Turbine')\n", "axs2[0,1].set_title('Pressure Turbine')\n",
"axs2[0,1].plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))\n", "axs2[0,1].plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))\n",
@@ -257,11 +287,11 @@
"axs2[0,1].set_ylabel(r'$p$ [mWS]')\n", "axs2[0,1].set_ylabel(r'$p$ [mWS]')\n",
"axs2[0,1].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))])\n", "axs2[0,1].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))])\n",
"\n", "\n",
"axs2[1,0].set_title('Velocity Turbine')\n", "axs2[1,1].set_title('Velocity Turbine')\n",
"axs2[1,0].plot(t_vec,v_boundary_tur)\n", "axs2[1,1].plot(t_vec,v_boundary_tur)\n",
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,0].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", "axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"axs2[1,0].set_ylim([-0.1,1.05*np.max(v_boundary_tur)])\n", "axs2[1,1].set_ylim([-0.1,1.05*np.max(v_boundary_tur)])\n",
"\n", "\n",
"fig2.tight_layout()\n", "fig2.tight_layout()\n",
"plt.show()" "plt.show()"

323
KW Arriach loop.py Normal file
View File

@@ -0,0 +1,323 @@
import os
import sys
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))
parent = os.path.dirname(current)
sys.path.append(parent)
from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class
from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class
from functions.pressure_conversion import pressure_conversion
from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class
from Regler.Regler_class_file import PI_controller_class
from Turbinen.Turbinen_class_file import Francis_Turbine
Area_list = np.round(np.arange(40.,90.,5.),1)
Kp_list = np.round(np.arange(0.1,3.0,0.2),1)
Ti_list = np.round(np.arange(10.,300.,10.),1)
for i in range(np.size(Area_list)):
for j in range(np.size(Kp_list)):
for k in range(np.size(Ti_list)):
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Current Time =", current_time)
print('i = ',i, '/ ', str(np.size(Area_list)-1))
print('j = ',j, '/ ', str(np.size(Kp_list)-1))
print('k = ',k, '/ ', str(np.size(Ti_list)-1))
print('area = ',Area_list[i])
print('K_p = ',Kp_list[j])
print('T_i = ',Ti_list[k])
with open('log.txt','a') as f:
f.write("Current Time =" + current_time + '\n')
f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\n')
f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\n')
f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\n')
f.write('area = '+str(Area_list[i])+ '\n')
f.write('K_p = '+str(Kp_list[j])+ '\n')
f.write('T_i = '+str(Ti_list[k])+ '\n')
# define constants
# for physics
g = 9.81 # [m/s²] gravitational acceleration
rho = 0.9982067*1e3 # [kg/m³] density of water
pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels
pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels
# for KW OL
OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine
OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv
OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding
OL_T1_closingTime = 30. # [s] closing time of turbine
# simulation of "Bacheinzug"
OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine
OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv
OL_T2_closingTime = 600. # [s] closing time of turbine
# for KW UL
UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine
UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine
UL_T1_closingTime = 30. # [s] closing time of turbine
UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine
UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine
UL_T2_closingTime = 30. # [s] closing time of turbine
# for PI controller
Con_targetLevel = 1.25 # [m]
Con_K_p = Kp_list[j] # [-] proportional constant of PI controller
Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term
Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene
# for pipeline
Pip_length = 2300. # [m] length of pipeline
Pip_dia = 1.5 # [m] diameter of pipeline
Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline
Pip_head = 68. # [m] hydraulic head of pipeline without reservoir
Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline
Pip_n_seg = 50 # [-] number of pipe segments in discretization
Pip_f_D = 0.015 # [-] Darcy friction factor
Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline
# derivatives of the pipeline constants
Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment
Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics
Pip_nn = Pip_n_seg+1 # [1] number of nodes
Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline
Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir
# for reservoir
Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir
Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area
Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings
Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings
Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)
Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline
Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution
# for general simulation
# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization
OL_LAs_init = [1./1.1,0.3] # [vec] initial guide vane openings of OL-KW
level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization
simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)
nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system
t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored
# create objects
# influx setting turbines
OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)
OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)
KW_OL = Kraftwerk_class()
KW_OL.add_turbine(OL_T1)
KW_OL.add_turbine(OL_T2)
KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)
flux_init = KW_OL.get_current_Q()
# Upstream reservoir
reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)
reservoir.set_steady_state(flux_init,level_init)
# pipeline
pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)
pipe.set_steady_state(flux_init,reservoir.get_current_pressure())
# downstream turbines
UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)
UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)
KW_UL = Kraftwerk_class()
KW_UL.add_turbine(UL_T1)
KW_UL.add_turbine(UL_T2)
KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])
# level controller
level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)
level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)
# initialization for Timeloop
# pipeline
v_old = pipe.get_current_velocity_distribution() # storing the velocity from the last timestep
v_min = pipe.get_lowest_velocity_per_node() # storing minimal flux velocity at each node
v_max = pipe.get_highest_velocity_per_node() # storing maximal flux velocity at each node
Q_old = pipe.get_current_flux_distribution() # storing the flux from the last timestep
Q_min = pipe.get_lowest_flux_per_node() # storing minimal flux at each node
Q_max = pipe.get_highest_flux_per_node() # storing maximal flux at each node
p_old = pipe.get_current_pressure_distribution() # storing the pressure from the last timestep
p_min = pipe.get_lowest_pressure_per_node() # storing minimal pressure at each node
p_max = pipe.get_highest_pressure_per_node() # storing maximal pressure at each node
p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node
v_boundary_res = np.zeros_like(t_vec) # storing the boundary velocity at the reservoir
v_boundary_tur = np.zeros_like(t_vec) # storing the boundary velocity at the turbine
Q_boundary_res = np.zeros_like(t_vec) # storing the boundary flux at the reservoir
Q_boundary_tur = np.zeros_like(t_vec) # storing the boundary flux at the turbine
p_boundary_res = np.zeros_like(t_vec) # storing the boundary pressure at the reservoir
p_boundary_tur = np.zeros_like(t_vec) # storing the boundary pressure at the turbine
v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir
v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine
Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir
Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine
p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir
p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine
# reservoir
Q_in_vec = np.zeros_like(t_vec) # storing the influx to the reservoir
Q_in_vec[0] = flux_init # storing the initial influx to the reservoir
# Outflux from reservoir is stored in Q_boundary_res
level_vec = np.zeros_like(t_vec) # storing the level in the reservoir at the end of each pipeline timestep
level_vec[0] = level_init # storing the initial level in the reservoir
volume_vec = np.zeros_like(t_vec) # storing the volume in the reservoir at the end of each pipeline timestep
volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir
# OL KW
# manual input to modulate influx
OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening
OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.
OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0]
OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening
OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening
OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening
OL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening
OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening
# UL KW
UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening
UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()
UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening
UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()
UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening
UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening
UL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening
UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening
# time loop
# needed for turbine convergence
convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]
# loop through time steps of the pipeline
for it_pipe in range(1,nt+1):
KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])
KW_OL.set_pressure(OL_p_pseudo)
Q_in_vec[it_pipe] = KW_OL.get_current_Q()
reservoir.set_influx(Q_in_vec[it_pipe])
# for each pipeline timestep, execute Res_nt timesteps of the reservoir code
# set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method
reservoir.set_pressure(p_old[0],display_warning=False)
reservoir.set_outflux(Q_old[0],display_warning=False)
# calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error
for it_res in range(Res_nt):
reservoir.timestep_reservoir_evolution()
level_vec[it_pipe] = reservoir.get_current_level()
volume_vec[it_pipe] = reservoir.get_current_volume()
level_control.update_control_variable(level_vec[it_pipe])
UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable()
UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable()
# change the guide vane opening based on the target value and closing time limitation
KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])
OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()
UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()
# set boundary condition for the next timestep of the characteristic method
convergence_parameters[0] = p_old[-2]
convergence_parameters[1] = v_old[-2]
convergence_parameters[9] = p_old[-1]
KW_UL.set_pressure(p_old[-1])
KW_UL.converge(convergence_parameters)
p_boundary_res[it_pipe] = reservoir.get_current_pressure()
v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()
Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()
# the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine
pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])
# pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out) # unnecessary
p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]
v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]
Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]
# perform the next timestep via the characteristic method
pipe.timestep_characteristic_method_vectorized()
# prepare for next loop
p_old = pipe.get_current_pressure_distribution()
v_old = pipe.get_current_velocity_distribution()
Q_old = pipe.get_current_flux_distribution()
level_plot_min = 0
level_plot_max = 3
volume_plot_min = level_plot_min*Res_area_base
volume_plot_max = level_plot_max*Res_area_base
fig3,axs3 = plt.subplots(2,2,figsize=(16,9))
fig3.suptitle('Fläche = '+str(Res_area_base)+'\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))
axs3[0,0].set_title('Level and Volume reservoir')
axs3[0,0].plot(t_vec,level_vec,label='level')
axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r')
axs3[0,0].set_xlabel(r'$t$ [$\mathrm{s}$]')
axs3[0,0].set_ylabel(r'$h$ [m]')
axs3[0,0].set_ylim(level_plot_min,level_plot_max)
x_twin_00 = axs3[0,0].twinx()
x_twin_00.set_ylabel(r'$V$ [$\mathrm{m}^3$]')
x_twin_00.plot(t_vec,volume_vec)
x_twin_00.set_ylim(volume_plot_min,volume_plot_max)
axs3[0,0].legend()
axs3[0,1].set_title('LA')
axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')
axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')
axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')
axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')
axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')
axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')
axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')
axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')
axs3[0,1].set_xlabel(r'$t$ [$\mathrm{s}$]')
axs3[0,1].set_ylabel(r'$LA$ [%]')
axs3[0,1].legend()
axs3[1,0].set_title('Fluxes')
axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')
axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')
axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')
axs3[1,0].set_xlabel(r'$t$ [$\mathrm{s}$]')
axs3[1,0].set_ylabel(r'$Q$ [$\mathrm{m}^3/\mathrm{s}$]')
axs3[1,0].legend()
axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')
axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')
axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')
axs3[1,1].set_xlabel(r'$t$ [$\mathrm{s}$]')
axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')
axs3[1,1].legend()
fig3.tight_layout()
# plt.show()
plt.close()
figname = 'Simulation Arriach\\Lastfall_2\\KW_Arriach_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp_'+str(Con_K_p)+'.png'
fig3.savefig(figname)

558
KW Arriach.ipynb Normal file
View File

@@ -0,0 +1,558 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# if script is used as jupyter notebook\n",
"desired_area = 60\n",
"desired_KP = 0.7\n",
"desired_ti = 200.\n",
"\n",
"Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"i = 0\n",
"j = 0\n",
"k = 0"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n",
"OL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # simulation of \"Bacheinzug\"\n",
"OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T2_closingTime = 600. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 1.25 # [m]\n",
"Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n",
"Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.5 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
"Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n",
"\n",
"KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n",
"flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# print(reservoir.get_info(full=True))\n",
"\n",
"# print(pipe.get_info())\n",
"# print(pipe.v)\n",
"# print(pipe.p)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# initialization for Timeloop\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution() # storing the velocity from the last timestep\n",
"v_min = pipe.get_lowest_velocity_per_node() # storing minimal flux velocity at each node\n",
"v_max = pipe.get_highest_velocity_per_node() # storing maximal flux velocity at each node\n",
"Q_old = pipe.get_current_flux_distribution() # storing the flux from the last timestep\n",
"Q_min = pipe.get_lowest_flux_per_node() # storing minimal flux at each node\n",
"Q_max = pipe.get_highest_flux_per_node() # storing maximal flux at each node\n",
"p_old = pipe.get_current_pressure_distribution() # storing the pressure from the last timestep\n",
"p_min = pipe.get_lowest_pressure_per_node() # storing minimal pressure at each node\n",
"p_max = pipe.get_highest_pressure_per_node() # storing maximal pressure at each node\n",
"p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec) # storing the boundary velocity at the reservoir\n",
"v_boundary_tur = np.zeros_like(t_vec) # storing the boundary velocity at the turbine\n",
"Q_boundary_res = np.zeros_like(t_vec) # storing the boundary flux at the reservoir\n",
"Q_boundary_tur = np.zeros_like(t_vec) # storing the boundary flux at the turbine\n",
"p_boundary_res = np.zeros_like(t_vec) # storing the boundary pressure at the reservoir\n",
"p_boundary_tur = np.zeros_like(t_vec) # storing the boundary pressure at the turbine\n",
"\n",
"v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n",
"v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n",
"Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n",
"Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n",
"p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n",
"p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n",
"\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec) # storing the influx to the reservoir\n",
"Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # storing the level in the reservoir at the end of each pipeline timestep\n",
"level_vec[0] = level_init # storing the initial level in the reservoir\n",
"volume_vec = np.zeros_like(t_vec) # storing the volume in the reservoir at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n",
"\n",
"# OL KW\n",
" # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0]\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"# UL KW\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n",
"\n",
"UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# displaying the guide vane openings\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,80])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-40,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# time loop\n",
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_p_pseudo)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n",
" # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n",
" reservoir.set_pressure(p_old[0],display_warning=False)\n",
" reservoir.set_outflux(Q_old[0],display_warning=False)\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" \n",
" # change the guide vane opening based on the target value and closing time limitation\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" KW_UL.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" # pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out) # unnecessary\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0:\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"axs2.set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n",
"# axs3[0,0].set_title('Level and Volume reservoir')\n",
"# axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"# axs3[0,0].set_ylim(0,3.5)\n",
"# x_twin_00 = axs3[0,0].twinx()\n",
"# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"# x_twin_00.plot(t_vec,volume_vec)\n",
"# x_twin_00.set_ylim(0,3.5*Res_area_base)\n",
"# axs3[0,0].legend()\n",
"\n",
"# axs3[0,1].set_title('LA')\n",
"# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n",
"# axs3[1,0].set_title('Fluxes')\n",
"# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs3[1,0].legend()\n",
"\n",
"# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs3[1,1].legend()\n",
"\n",
"# fig3.tight_layout()\n",
"# plt.show()\n",
"\n",
"# figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n",
"# fig3.savefig(figname)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -2,29 +2,64 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 41, "execution_count": 112,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.20002544638949704\n",
"1.9245898801593564\n",
"0.15248828285441496\n"
]
}
],
"source": [ "source": [
"import numpy as np\n", "print(level_vec[0]-np.min(level_vec))\n",
"import matplotlib.pyplot as plt\n", "print(level_vec[np.argmin(np.abs(t_vec-600))])\n",
"\n", "print(np.max(level_vec)-level_vec[0])"
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 42, "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"i = 19\n",
"j = 6\n",
"\n",
"Kp_list = np.arange(0.1,2.1,0.1)\n",
"Area_list = np.arange(20.,160.,20.)"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -48,14 +83,17 @@
" # for KW UL\n", " # for KW UL\n",
"UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", "UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 80. # [s] closing time of turbine\n", "UL_T1_closingTime = 160. # [s] closing time of turbine\n",
"\n", "\n",
"UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", "UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 80. # [s] closing time of turbine\n", "UL_T2_closingTime = 160. # [s] closing time of turbine\n",
"\n", "\n",
" # for PI controller\n", " # for PI controller\n",
"Con_targetLevel = 2. # [m]\n", "Con_targetLevel = 2. # [m]\n",
"Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n",
"Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n", "\n",
" # for pipeline\n", " # for pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n", "Pip_length = 2300. # [m] length of pipeline\n",
@@ -74,7 +112,7 @@
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n", "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n", "\n",
" # for reservoir\n", " # for reservoir\n",
"Res_area_base = 100. # [m²] total base are of the cuboid reservoir \n", "Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n", "Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
@@ -83,29 +121,22 @@
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n", "\n",
" # for general simulation\n", " # for general simulation\n",
"flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n", "# flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": 104,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# create objects\n", "# create objects\n",
"\n", "\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# influx setting turbines\n", "# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n", "OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
@@ -114,7 +145,17 @@
"KW_OL.add_turbine(OL_T1)\n", "KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n", "KW_OL.add_turbine(OL_T2)\n",
"\n", "\n",
"KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n", "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_T1_p_nenn)\n",
"\n",
"flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n", "\n",
"# downstream turbines\n", "# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
@@ -124,12 +165,16 @@
"KW_UL.add_turbine(UL_T1)\n", "KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n", "KW_UL.add_turbine(UL_T2)\n",
"\n", "\n",
"KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n" "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 44, "execution_count": 105,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -174,10 +219,12 @@
" # manual input to modulate influx\n", " # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n", "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = 1.\n",
"\n", "\n",
"\n", "\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"\n", "\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n", "\n",
@@ -185,11 +232,11 @@
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", "OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n", "\n",
"# UL KW\n", "# UL KW\n",
"UL_T1_LA_soll_vec = np.full_like(t_vec,UL_T1.get_current_LA()) # storing the target value of the guide vane opening\n", "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] -= 0.1\n", "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n",
"\n", "\n",
"UL_T2_LA_soll_vec = np.full_like(t_vec,UL_T2.get_current_LA()) # storing the target value of the guide vane opening\n", "UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] = 0.\n", "UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()\n",
"\n", "\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
@@ -200,71 +247,71 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 45, "execution_count": 106,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n", "# %matplotlib qt5\n",
"# displaying the guide vane openings\n", "# # displaying the guide vane openings\n",
"fig0,axs0 = plt.subplots(1,1)\n", "# fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n", "# axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", "# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", "# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", "# axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n", "# axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n", "# axs0.legend()\n",
"plt.pause(2)" "# plt.pause(2)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 46, "execution_count": 107,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n", "%matplotlib qt5\n",
"# Time loop\n", "# Time loop\n",
"\n", "\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", "# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n", "# fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", "# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n", "# axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", "# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')c\n",
"axs1[0].set_ylim([-2,50])\n", "# axs1[0].set_ylim([-2,50])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", "# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", "# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-2,20])\n", "# axs1[1].set_ylim([-2,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n", "# axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", "# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n", "# axs1[2].set_ylim([-1,10])\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", "# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", "# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", "# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", "# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", "# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", "# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", "# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", "# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", "# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n", "\n",
"# axs1[0].autoscale()\n", "# # axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n", "# # axs1[1].autoscale()\n",
"\n", "\n",
"fig1.tight_layout()\n", "# fig1.tight_layout()\n",
"fig1.show()\n", "# fig1.show()\n",
"plt.pause(1)\n" "# plt.pause(1)\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 47, "execution_count": 108,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -288,6 +335,10 @@
" reservoir.timestep_reservoir_evolution() \n", " reservoir.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n", " level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n", " volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" \n", " \n",
" # change the guide vane opening based on the target value and closing time limitation\n", " # change the guide vane opening based on the target value and closing time limitation\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n", " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
@@ -319,115 +370,119 @@
" v_old = pipe.get_current_velocity_distribution()\n", " v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n", " Q_old = pipe.get_current_flux_distribution()\n",
"\n", "\n",
" # plot some stuff\n", " # # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", " # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0:\n", " # if it_pipe%50 == 0:\n",
" lo_0.remove()\n", " # lo_0.remove()\n",
" lo_0min.remove()\n", " # lo_0min.remove()\n",
" lo_0max.remove()\n", " # lo_0max.remove()\n",
" lo_1.remove()\n", " # lo_1.remove()\n",
" lo_1min.remove()\n", " # lo_1min.remove()\n",
" lo_1max.remove()\n", " # lo_1max.remove()\n",
" lo_2.remove()\n", " # lo_2.remove()\n",
" lo_2min.remove()\n", " # lo_2min.remove()\n",
" lo_2max.remove()\n", " # lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n", " # # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", " # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", " # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", " # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", " # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", " # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", " # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", " # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", " # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", " # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", " # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n", " # fig1.canvas.draw()\n",
" fig1.tight_layout()\n", " # fig1.tight_layout()\n",
" fig1.show()\n", " # fig1.show()\n",
" plt.pause(0.1) " " # plt.pause(0.1) "
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 48, "execution_count": 109,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fig2,axs2 = plt.subplots(1,1)\n", "# fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n", "# axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n", "# axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n", "# axs2.set_ylabel(r'$h$ [m]')\n",
"x_twin_00 = axs2.twinx()\n", "# x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n", "# x_twin_00.plot(t_vec,volume_vec)\n",
"axs2.legend()\n", "# axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n", "\n",
"# fig2,axs2 = plt.subplots(1,1)\n", "# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n", "# axs2.set_title('LA')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", "# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", "# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$LA$ [%]')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Fluxes')\n",
"# axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs2.legend()\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Pressure')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"# # fig2,axs2 = plt.subplots(1,1)\n",
"# # axs2.set_title('Min and Max Fluxes')\n",
"# # axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# # axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# # axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# # axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n", "\n",
"\n", "\n",
"fig2.tight_layout()\n", "# fig2.tight_layout()\n",
"plt.show()" "# plt.show()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 49, "execution_count": 110,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"fig3,axs3 = plt.subplots(2,2)\n", "\n",
"fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n", "axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n", "axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n", "axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"axs3[0,0].set_ylim(0,3.5)\n",
"x_twin_00 = axs3[0,0].twinx()\n", "x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n", "x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(0,3.5*Res_area_base)\n",
"axs3[0,0].legend()\n", "axs3[0,0].legend()\n",
"\n", "\n",
"axs3[0,1].set_title('LA')\n", "axs3[0,1].set_title('LA')\n",
@@ -459,24 +514,31 @@
"axs3[1,1].legend()\n", "axs3[1,1].legend()\n",
"\n", "\n",
"fig3.tight_layout()\n", "fig3.tight_layout()\n",
"plt.show()" "plt.show()\n",
"\n",
"figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n",
"fig3.savefig(figname)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 111,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.015478260869565217\n" "0.20002544638949704\n",
"1.9245898801593564\n",
"0.15248828285441496\n"
] ]
} }
], ],
"source": [ "source": [
"print(np.sin(Pip_angle))" "print(level_vec[0]-np.min(level_vec))\n",
"print(level_vec[np.argmin(np.abs(t_vec-600))])\n",
"print(np.max(level_vec)-level_vec[0])"
] ]
} }
], ],

View File

@@ -2,29 +2,30 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import sys\n",
"import os\n", "import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n", "parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n", "sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine\n", "from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n", "from Regler.Regler_class_file import PI_controller_class\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class" "from Turbinen.Turbinen_class_file import Francis_Turbine"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -95,7 +96,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -117,7 +118,7 @@
"KW_OL.add_turbine(OL_T1)\n", "KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n", "KW_OL.add_turbine(OL_T2)\n",
"\n", "\n",
"KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n", "KW_OL.set_steady_state_by_flux(flux_init,OL_T1_p_nenn)\n",
"\n", "\n",
"# downstream turbines\n", "# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
@@ -127,7 +128,7 @@
"KW_UL.add_turbine(UL_T1)\n", "KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n", "KW_UL.add_turbine(UL_T2)\n",
"\n", "\n",
"KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n", "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n", "\n",
"# level controller\n", "# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
@@ -136,7 +137,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -212,12 +213,11 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib qt5\n", "%matplotlib qt5\n",
"# Con_T_ime loop\n",
"\n", "\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(2,1)\n", "fig1,axs1 = plt.subplots(2,1)\n",
@@ -247,7 +247,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -331,7 +331,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@@ -397,7 +397,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [

742
KW Vorlage.ipynb Normal file
View File

@@ -0,0 +1,742 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Markdown for converting jupyter notebook into a python script for looping\n",
"- make a copy of \"KW Vorlage.ipynb\" (will be deleted later)\n",
"- changes to called functions\n",
" - in the Ausgleichsbecken_class file, in the update_level() method, comment out the raise_Exception('Reservoir ran empty') lines 228/229\n",
" - this might lead to a warning, for a divide by 0 situation, which can usually be ignored:\n",
" - RuntimeWarning: invalid value encountered in double_scalars: f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)\n",
"- changes to code cells\n",
" - for code cell 1\n",
" - delete last code section \"backup...\"\n",
" - toggle comment\n",
" - change Area_, Kp_ and Ti_list for loop\n",
" - for code cell 2\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 3\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 4\n",
" - delete entire code cell to avoid printing too much to console\n",
" - for code cell 5\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 6\n",
" - delete entire code cell because plotting the guide vane opening is not necessary in loop scenario\n",
" - for code cell 7\n",
" - delete entire code cell because plotting is not necessary in loop scenario and costs performance\n",
" - for code cell 8\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - delete the section from line 65 to the bottom - plotting is not necessary\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 9\n",
" - delete entire code cell because plotting is handled in code cell 10\n",
" - for code cell 10\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - delete/comment out line 52 plt.show(), which stops the loop until the figure is closed\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
"- delete first markdown cell\n",
"- converting to Python file\n",
" - click \"Export\"\n",
" - choose Python script\n",
" - save Pyhton script with proper name\n",
"- (optional) format Python script\n",
" - select \"# %%\"\n",
" - press and hold \"strg\", press and hold \"d\" (selects all occurances of \"# %%\" after a few seconds)\n",
" - press \"strg\"+\"shift\"+\"K\" once to delete all lines that are selected\n",
"- final touches\n",
" - run the loop with a small test set and fix everything i forgot ;-)\n",
" - delete the copied \"KW Vorlage copy.ipynb\"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# code cell 0\n",
"import os\n",
"import sys\n",
"from datetime import datetime\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# code cell 1\n",
"# for loop creation\n",
"\n",
"# Area_list = np.round(np.arange(40.,90.,5.),1)\n",
"# Kp_list = np.round(np.arange(0.1,3.0,0.2),1)\n",
"# Ti_list = np.round(np.arange(10.,300.,10.),1)\n",
"\n",
"# # # if one wants to use the loop to save 1 specific configuration:\n",
"# # desired_area = 60\n",
"# # desired_KP = 0.7\n",
"# # desired_ti = 200.\n",
"\n",
"# # Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"# # Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"# # Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"\n",
"# for i in range(np.size(Area_list)):\n",
"# for j in range(np.size(Kp_list)):\n",
"# for k in range(np.size(Ti_list)):\n",
"# now = datetime.now()\n",
"# current_time = now.strftime(\"%H:%M:%S\")\n",
"# print(\"Current Time =\", current_time)\n",
"\n",
"# print('i = ',i, '/ ', str(np.size(Area_list)-1))\n",
"# print('j = ',j, '/ ', str(np.size(Kp_list)-1))\n",
"# print('k = ',k, '/ ', str(np.size(Ti_list)-1))\n",
"# print('area = ',Area_list[i])\n",
"# print('K_p = ',Kp_list[j])\n",
"# print('T_i = ',Ti_list[k])\n",
"\n",
"# with open('log.txt','a') as f:\n",
"# f.write(\"Current Time =\" + current_time + '\\n')\n",
"# f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\\n')\n",
"# f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\\n')\n",
"# f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\\n')\n",
"# f.write('area = '+str(Area_list[i])+ '\\n')\n",
"# f.write('K_p = '+str(Kp_list[j])+ '\\n')\n",
"# f.write('T_i = '+str(Ti_list[k])+ '\\n')\n",
"\n",
"# backup if script is used as jupyter notebook\n",
"desired_area = 60\n",
"desired_KP = 0.7\n",
"desired_ti = 200.\n",
"\n",
"Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"i = 0\n",
"j = 0\n",
"k = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- adapt tubine parameters\n",
"- adapt controller parameters\n",
"- adapt pipeline parameters\n",
"- adapt reservoir parameters\n",
"- see end of code cell 1 for reservoir base area, controller K_p and T_i\n",
"\n",
"- choose between initialization by flux or guide vane opening - toggle comment in lines 62/63\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# code cell 2\n",
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n",
"OL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # simulation of \"Bacheinzug\"\n",
"OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T2_closingTime = 600. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 1.25 # [m] target level of the PI controller\n",
"Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller\n",
"Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.5 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
"Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# code cell 3\n",
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n",
"\n",
"KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n",
"flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# code cell 4\n",
"# using the get_info() methods\n",
"\n",
"# print(KW_OL.get_info())\n",
"# print(reservoir.get_info(full=True))\n",
"# print(pipe.get_info())\n",
"# print(KW_UL.get_info())\n",
"# print(level_control.get_info())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change the influx through the OL HPP by manually setting the guide vane openings\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# code cell 5\n",
"# initialization for Timeloop\n",
"\n",
"# OL KW\n",
" # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s \n",
"\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"\n",
"# creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop\n",
"\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir\n",
"Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep\n",
"level_vec[0] = level_init # storing the initial level in the reservoir\n",
"volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep\n",
"v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node\n",
"v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node\n",
"Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep\n",
"Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node\n",
"Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node\n",
"p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep\n",
"p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node\n",
"p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node\n",
"p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir\n",
"v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine\n",
"Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir\n",
"Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine\n",
"p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir\n",
"p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine\n",
"\n",
"v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n",
"v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n",
"Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n",
"Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n",
"p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n",
"p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n",
"\n",
"# OL KW\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"# UL KW\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# code cell 6\n",
"# displaying the guide vane openings\n",
"# for plot in separate window\n",
"%matplotlib qt5 \n",
"\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# code cell 7\n",
"# create the figure in which the evolution of the pipeline will be displayed\n",
"%matplotlib qt5\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,80])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-40,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n",
"# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- in line 10 OL_p_pseudo is used"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"# code cell 8\n",
"# time loop\n",
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" # update OL_KW and the influx into the reservoir\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_p_pseudo)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n",
" # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n",
" reservoir.set_pressure(p_old[0],display_warning=False)\n",
" reservoir.set_outflux(Q_old[0],display_warning=False)\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" # save the level and the volume in the reservoir \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" # update target value for UL_KW from the level controller\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" \n",
" # change the guide vane opening based on the target value and closing time limitation\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" # save the actual guide vane openings\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" # use the convergence method to avoid numerical errors\n",
" KW_UL.converge(convergence_parameters)\n",
" # save the first set of boundary conditions\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" # save the second set of boundary conditions\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" # use vectorized method for performance\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw() # force figure output\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# code cell 9\n",
"# plot some stuff in separate windows\n",
"\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"axs2.set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Fluxes')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change level_plot_min and _max\n",
"- check that folder for saving figures is present in same directory as this file\n",
"- change name of the saved file in line 54: Vorlage -> ..."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# code cell 10\n",
"# code for plotting and safing the figures generated in the loop\n",
"\n",
"# level_plot_min = 0\n",
"# level_plot_max = 3\n",
"# volume_plot_min = level_plot_min*Res_area_base\n",
"# volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n",
"# axs3[0,0].set_title('Level and Volume reservoir')\n",
"# axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"# axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"# axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n",
"# x_twin_00 = axs3[0,0].twinx()\n",
"# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"# x_twin_00.plot(t_vec,volume_vec)\n",
"# x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"# axs3[0,0].legend()\n",
"\n",
"# axs3[0,1].set_title('LA')\n",
"# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n",
"# axs3[1,0].set_title('Fluxes')\n",
"# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs3[1,0].legend()\n",
"\n",
"# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs3[1,1].legend()\n",
"\n",
"# fig3.tight_layout()\n",
"# plt.show()\n",
"\n",
"# figname = 'Simulation Vorlage\\KW_Vorlage_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n",
"# fig3.savefig(figname)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,20 +1,33 @@
# import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np import numpy as np
#importing Druckrohrleitung
import sys #importing pressure conversion function
import os current = os.path.dirname(os.path.realpath(__file__))
current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))
parent = os.path.dirname(current) parent = os.path.dirname(current)
sys.path.append(parent) sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion from functions.pressure_conversion import pressure_conversion
from Turbinen.Turbinen_class_file import Francis_Turbine from Turbinen.Turbinen_class_file import Francis_Turbine
class Kraftwerk_class: class Kraftwerk_class:
g = 9.81 g = 9.81
def __init__(self): def __init__(self):
# create an empty powerhouse
# see add_turbine() method
self.turbines = [] self.turbines = []
self.n_turbines = 0 self.n_turbines = 0
def add_turbine(self,turbine):
# add a turbine object from the turbine class
self.turbines.append(turbine)
self.n_turbines += 1
# setter # setter
def set_LAs(self,LA_vec,display_warning=True): def set_LAs(self,LA_vec,display_warning=True):
for i in range(self.n_turbines): for i in range(self.n_turbines):
@@ -24,10 +37,14 @@ class Kraftwerk_class:
for i in range(self.n_turbines): for i in range(self.n_turbines):
self.turbines[i].set_pressure(pressure) self.turbines[i].set_pressure(pressure)
def set_steady_state(self,ss_flux,ss_pressure): def set_steady_state_by_flux(self,ss_flux,ss_pressure):
self.identify_Q_proportion() self.identify_Q_proportion()
for i in range(self.n_turbines): for i in range(self.n_turbines):
self.turbines[i].set_steady_state(ss_flux*self.Q_prop[i],ss_pressure) self.turbines[i].set_steady_state_by_flux(ss_flux*self.Q_prop[i],ss_pressure)
def set_steady_state_by_LA(self,LA_vec,ss_pressure):
for i in range(self.n_turbines):
self.turbines[i].set_steady_state_by_LA(LA_vec[i],ss_pressure)
# getter # getter
def get_current_Q(self): def get_current_Q(self):
@@ -57,15 +74,12 @@ class Kraftwerk_class:
# methods # methods
def identify_Q_proportion(self): def identify_Q_proportion(self):
# calculate the proportions of the nominal fluxes of all turbines in the powerhouse
Q_n_vec = np.zeros(self.n_turbines) Q_n_vec = np.zeros(self.n_turbines)
for i in range(self.n_turbines): for i in range(self.n_turbines):
Q_n_vec[i] = self.turbines[i].get_Q_n() Q_n_vec[i] = self.turbines[i].get_Q_n()
self.Q_prop = Q_n_vec/np.sum(Q_n_vec) self.Q_prop = Q_n_vec/np.sum(Q_n_vec)
def add_turbine(self,turbine):
self.turbines.append(turbine)
self.n_turbines += 1
def update_LAs(self,LA_soll_vec): def update_LAs(self,LA_soll_vec):
for i in range(self.n_turbines): for i in range(self.n_turbines):
self.turbines[i].update_LA(LA_soll_vec[i]) self.turbines[i].update_LA(LA_soll_vec[i])
@@ -73,7 +87,7 @@ class Kraftwerk_class:
def converge(self,convergence_parameters): def converge(self,convergence_parameters):
# small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the # small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the
# new pressure from the forward characteristic are not perfectly compatible. # new pressure from the forward characteristic are not perfectly compatible.
# Therefore, iterate the flux and the pressure so long, until they converge # Therefore, iterate the flux and the pressure so long, until they converge - i honestly have no idea why that works :D (steady state test prove it right ¯\_(ツ)_/¯)
eps = 1e-12 # convergence criterion: iteration change < eps eps = 1e-12 # convergence criterion: iteration change < eps
iteration_change = 1. # change in Q from one iteration to the next iteration_change = 1. # change in Q from one iteration to the next

View File

@@ -1,4 +1,5 @@
import numpy as np import numpy as np
#based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation #based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation
# performance parameters for controllers # performance parameters for controllers
@@ -129,7 +130,7 @@ class PI_controller_class:
def get_info(self): def get_info(self):
new_line = '\n' new_line = '\n'
# :<10 pads the self.value to be 10 characters wide # :<10 pads the self.value to be 10 characters wide
print_str = (f"Turbine has the following attributes: {new_line}" print_str = (f"Controller has the following attributes: {new_line}"
f"----------------------------- {new_line}" f"----------------------------- {new_line}"
f"Type = PI Controller {new_line}" f"Type = PI Controller {new_line}"
f"Setpoint = {self.SP:<10} {new_line}" f"Setpoint = {self.SP:<10} {new_line}"

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 138 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 208 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

Some files were not shown because too many files have changed in this diff Show More