diff --git a/Ausgleichsbecken/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/Ausgleichsbecken_class_file.py index 1b5378a..7b38227 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/Ausgleichsbecken_class_file.py @@ -66,13 +66,14 @@ class Ausgleichsbecken_class: # getter def get_info(self, full = False): new_line = '\n' + if full == True: # :<10 pads the self.value to be 10 characters wide print_str = (f"The cuboid reservoir has the following attributes: {new_line}" f"----------------------------- {new_line}" f"Base area = {self.area:<10} {self.area_unit_print} {new_line}" - f"Outflux area = {self.area_outflux:<10} {self.area_outflux_unit_print} {new_line}" + f"Outflux area = {round(self.area_outflux,3):<10} {self.area_outflux_unit_print} {new_line}" f"Current level = {self.level:<10} {self.level_unit_print}{new_line}" f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}" f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}" diff --git a/Ausgleichsbecken/Ausgleichsbecken_functions.py b/Ausgleichsbecken/Ausgleichsbecken_functions.py deleted file mode 100644 index 37e5450..0000000 --- a/Ausgleichsbecken/Ausgleichsbecken_functions.py +++ /dev/null @@ -1,30 +0,0 @@ -import numpy as np - -def get_h_halfstep(initial_height, influx, outflux, timestep, area): - h0 = initial_height - Q_in = influx - Q_out = outflux - dt = timestep - A = area - - h_halfstep = h0+1/A*(Q_in-Q_out)*dt/2 - -def get_p_halfstep(p0, p1): - p_halfstep = (p0+p1)/2 - -def FODE_function(x, h, alpha, p, rho=1000., g=9.81): - f = x*abs(x)/h*alpha+g-p/(rho*h) - return f - - -def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1): - alpha = (A1/A0-1) - h_hs = get_h_halfstep(h, Q0, Q1, dt, A0) - p_hs = get_p_halfstep(p0, p1) - Y1 = yn - Y2 = yn + dt/2*FODE_function(Y1, h, alpha, p0) - Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs) - Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs) - ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p0)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \ - 2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p0)) - diff --git a/Druckrohrleitung/Druckrohrleitung_class_file.py b/Druckrohrleitung/Druckrohrleitung_class_file.py index fe1f104..5458873 100644 --- a/Druckrohrleitung/Druckrohrleitung_class_file.py +++ b/Druckrohrleitung/Druckrohrleitung_class_file.py @@ -9,6 +9,8 @@ sys.path.append(parent) from functions.pressure_conversion import pressure_conversion + + class Druckrohrleitung_class: # units acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$' @@ -109,7 +111,9 @@ class Druckrohrleitung_class: # getter def get_info(self): - new_line = '\n' + new_line = '\n' + angle_deg = round(self.angle/np.pi*180,3) + # :<10 pads the self.value to be 10 characters wide print_str = (f"The pipeline has the following attributes: {new_line}" @@ -118,13 +122,15 @@ class Druckrohrleitung_class: f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}" f"Number of segments = {self.n_seg:<10} {new_line}" f"Number of nodes = {self.n_seg+1:<10} {new_line}" - f"Length per segments = {self.dx:<10} {self.length_unit_print} {new_line}" + f"Length per segments = {self.dx:<10} {self.length_unit_print} {new_line}" f"Pipeline angle = {round(self.angle,3):<10} {self.angle_unit_print} {new_line}" + f"Pipeline angle = {angle_deg}° {new_line}" f"Darcy friction factor = {self.f_D:<10} {new_line}" f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}" f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}" - f"Simulation timestep = {self.dt:<10} {self.time_unit_print } {new_line}" + f"Simulation timestep = {self.dt:<10} {self.time_unit_print} {new_line}" f"Number of timesteps = {self.nt:<10} {new_line}" + f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_print} {new_line}" f"----------------------------- {new_line}" f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object") @@ -162,14 +168,3 @@ class Druckrohrleitung_class: self.p_old = self.p.copy() self.v_old = self.v.copy() - - - - - - - - - - - diff --git a/Druckrohrleitung/Druckrohrleitung_ETH_class_file.py b/Druckrohrleitung/old/Druckrohrleitung_ETH_class_file.py similarity index 100% rename from Druckrohrleitung/Druckrohrleitung_ETH_class_file.py rename to Druckrohrleitung/old/Druckrohrleitung_ETH_class_file.py diff --git a/Druckrohrleitung/Druckstoß_ETH.ipynb b/Druckrohrleitung/old/Druckstoß_ETH.ipynb similarity index 100% rename from Druckrohrleitung/Druckstoß_ETH.ipynb rename to Druckrohrleitung/old/Druckstoß_ETH.ipynb diff --git a/combine_pipeline_and_reservoir.ipynb b/combine_pipeline_and_reservoir.ipynb index 9b62d7f..563634d 100644 --- a/combine_pipeline_and_reservoir.ipynb +++ b/combine_pipeline_and_reservoir.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -24,47 +24,48 @@ "\n", "# physics\n", "g = 9.81 # gravitational acceleration [m/s²]\n", - "rho = 1000. # density of water [kg/m³]\n", + "rho = 1000. # density of water [kg/m³]\n", "\n", "# pipeline\n", "L = 1000. # length of pipeline [m]\n", "D = 1. # pipe diameter [m]\n", - "#consider replacing Q0 with a vector be be more flexible in initial conditions\n", - "Q0 = 2 # initial flow in whole pipe [m³/s]\n", "A_pipe = D**2/4*np.pi # pipeline area\n", - "v0 = Q0/A_pipe # initial flow velocity [m/s]\n", - "h_res = 20. # water level in upstream reservoir [m]\n", - "n = 10 # number of pipe segments in discretization\n", - "nt = 10000 # number of time steps after initial conditions\n", - "f_D = 0.01 # Darcy friction factor\n", - "c = 400. # propagation velocity of the pressure wave [m/s]\n", - "h_pipe = 300 # hydraulic head without reservoir [m] \n", + "h_pipe = 200 # hydraulic head without reservoir [m] \n", "alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n", + "n = 10 # number of pipe segments in discretization\n", + "#consider replacing Q0 with a vector be be more flexible in initial conditions\n", + "Q0 = 2. # initial flow in whole pipe [m³/s]\n", + "v0 = Q0/A_pipe # initial flow velocity [m/s]\n", + "f_D = 0.1 # Darcy friction factor\n", + "c = 400. # propagation velocity of the pressure wave [m/s]\n", + "#consider prescribing a total simulation time and deducting the number of timesteps from that\n", + "nt = 500 # number of time steps after initial conditions\n", "\n", "# derivatives of the pipeline constants\n", - "p0 = rho*g*h_res-v0**2*rho/2\n", - "dx = L/n # length of each pipe segment\n", - "dt = dx/c # timestep according to method of characterisitics\n", - "nn = n+1 # number of nodes\n", - "pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n", - "t_vec = np.arange(0,nt*dt,dt) # time vector\n", - "h_vec = np.arange(0,h_pipe+h_pipe/n,h_pipe/n) # hydraulic head of pipeline at each node\n", - "\n", - "v_init = np.full(nn,Q0/(D**2/4*np.pi))\n", - "p_init = (rho*g*(h_res+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n", + "dx = L/n # length of each pipe segment\n", + "dt = dx/c # timestep according to method of characterisitics\n", + "nn = n+1 # number of nodes\n", + "h_res = 20. # water level in upstream reservoir [m]\n", + "p0 = rho*g*h_res-v0**2*rho/2\n", + "pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n", + "t_vec = np.arange(0,nt*dt,dt) # time vector\n", + "h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node np.arange(0,0) does not yield the intended result\n", + "v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n", + "p_init = (rho*g*(h_res+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n", "\n", "\n", "# reservoir\n", - "initial_level = h_res # m\n", - "initial_influx = 0. # m³/s\n", - "initial_outflux = Q0 # m³/s\n", - "initial_pipeline_pressure = p0 # Pa \n", - "initial_pressure_unit = 'Pa'\n", - "conversion_pressure_unit = 'Pa'\n", - "area_base = 5. # m² really large base are to ensure level never becomes < 0\n", - "area_outflux = A_pipe # m²\n", - "critical_level_low = 0. # m\n", - "critical_level_high = np.inf # m\n", + "initial_level = h_res # water level in upstream reservoir [m]\n", + "# replace influx by vector\n", + "initial_influx = 0. # initial influx of volume to the reservoir [m³/s]\n", + "initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n", + "initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n", + "initial_pressure_unit = 'Pa' # for pressure conversion in print statements and plot labels\n", + "conversion_pressure_unit = 'Pa' # for pressure conversion in print statements and plot labels\n", + "area_base = 20. # total base are of the cuboid reservoir [m²] \n", + "area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n", + "critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n", + "critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n", "\n", "# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n", "nt_eRK4 = 1000 # number of simulation steps of reservoir in between timesteps of pipeline \n", @@ -73,27 +74,64 @@ ] }, { - "cell_type": "code", - "execution_count": 7, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(3.6368236494728476, 'mWS')\n" - ] - } - ], "source": [ - "print(pressure_conversion(-np.sum((-v_init**2*rho/2)),'Pa','mWS'))" + "#### Ideas for checks after constant definitions: \n", + "\n", + "- Check that the initial pressure is not negative:\n", + " - may happen, if there is too little hydraulic head to create the initial flow conditions with the given friction\n", + "
\n", + "
\n", + "- stupidity checks?\n", + " - area > area_outflux ?\n", + " - propable ranges for parameters?\n", + " - angle and height/length fit together?\n", + " " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The cuboid reservoir has the following attributes: \n", + "----------------------------- \n", + "Base area = 20.0 m² \n", + "Outflux area = 0.785 m² \n", + "Current level = 20.0 m\n", + "Critical level low = 0.0 m \n", + "Critical level high = inf m \n", + "Volume in reservoir = 400.0 m³ \n", + "Current influx = 0.0 m³/s \n", + "Current outflux = 2.0 m³/s \n", + "Simulation timestep = 0.00025 s \n", + "----------------------------- \n", + "\n", + "The pipeline has the following attributes: \n", + "----------------------------- \n", + "Length = 1000.0 m \n", + "Diameter = 1.0 m \n", + "Number of segments = 10 \n", + "Number of nodes = 11 \n", + "Length per segments = 100.0 m \n", + "Pipeline angle = 0.201 rad \n", + "Pipeline angle = 11.537° \n", + "Darcy friction factor = 0.1 \n", + "Density of liquid = 1000 kg/m³ \n", + "Pressure wave vel. = 400.0 m/s \n", + "Simulation timestep = 0.25 s \n", + "Number of timesteps = 500 \n", + "Total simulation time = 125.0 s \n", + "----------------------------- \n", + "Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object\n" + ] + } + ], "source": [ "# create objects\n", "\n", @@ -103,11 +141,16 @@ "V.set_outflux(initial_outflux)\n", "V.pressure, V.pressure_unit = pressure_conversion(initial_pipeline_pressure,input_unit = initial_pressure_unit, target_unit = conversion_pressure_unit)\n", "\n", + "\n", "pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n", "pipe.set_pressure_propagation_velocity(c)\n", "pipe.set_number_of_timesteps(nt)\n", "pipe.set_initial_pressure(p_init)\n", - "pipe.set_initial_flow_velocity(v_init)" + "pipe.set_initial_flow_velocity(v_init)\n", + "\n", + "# display the attributes of the created reservoir and pipeline object\n", + "V.get_info(full=True)\n", + "pipe.get_info()" ] }, { @@ -118,26 +161,33 @@ "source": [ "# initialization for timeloop\n", "\n", + "# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n", "v_old = v_init.copy()\n", "p_old = p_init.copy()\n", "\n", - "#vectors to store boundary conditions\n", + "# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n", + " # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n", + " # through the time evolution of the reservoir respectively \n", + " # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n", "v_boundary_res = np.empty_like(t_vec)\n", "v_boundary_tur = np.empty_like(t_vec)\n", "p_boundary_res = np.empty_like(t_vec)\n", "p_boundary_tur = np.empty_like(t_vec)\n", - "level_vec = np.empty_like(t_vec)\n", - "level_vec_2 = np.full([nt_eRK4],initial_level)\n", "\n", + "# prepare the vectors that store the temporal evolution of the level in the reservoir\n", + "level_vec = np.full_like(t_vec,initial_level) # level at the end of each pipeline timestep\n", + "level_vec_2 = np.empty([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n", + "\n", + "# set the boudary conditions for the first timestep\n", "v_boundary_res[0] = v_old[0]\n", - "v_boundary_tur[0] = v_old[-1] # instantaneous closing\n", - "# v_boundary_tur[1:] = 0\n", - "v_boundary_tur[0:1000] = np.linspace(v_old[-1],0,1000) # finite closing time - linear case\n", + "v_boundary_tur[0] = v_old[-1] \n", + "v_boundary_tur[1:] = 0 # instantaneous closing\n", + "# v_boundary_tur[0:20] = np.linspace(v_old[-1],0,20) # overwrite for finite closing time - linear case\n", + "const = int(np.min([100,round(nt/1.1)]))\n", + "v_boundary_tur[0:const] = v_old[1]*np.cos(t_vec[0:const]*2*np.pi/5)**2\n", "p_boundary_res[0] = p_old[0]\n", "p_boundary_tur[0] = p_old[-1]\n", - "level_vec[0] = initial_level\n", - "\n", - "v_boundary_tur[1:] = 0 # instantaneous closing" + "\n" ] }, { @@ -149,62 +199,73 @@ "%matplotlib qt5\n", "# time loop\n", "\n", - "\n", - "# fig2,axs2 = plt.subplots(3,1)\n", - "# axs2[0].set_title('Pressure distribution in pipeline')\n", - "# axs2[1].set_title('Velocity distribution in pipeline')\n", - "# axs2[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs2[0].set_ylabel(r'$p$ [mWS]')\n", - "# axs2[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "# axs2[1].set_ylabel(r'$p$ [mWS]')\n", - "# lo_00, = axs2[0].plot(pl_vec,pressure_conversion(pipe.p_old,'Pa','mWS')[0],marker='.')\n", - "# lo_01, = axs2[1].plot(pl_vec,pipe.v_old,marker='.')\n", - "# lo_02, = axs2[2].plot(level_vec_2)\n", - "# axs2[0].autoscale()\n", - "# axs2[1].autoscale()\n", - "# axs2[2].autoscale()\n", - "# fig2.tight_layout()\n", + "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "fig1,axs1 = plt.subplots(2,1)\n", + "axs1[0].set_title('Pressure distribution in pipeline')\n", + "axs1[1].set_title('Velocity distribution in pipeline')\n", + "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[0].set_ylabel(r'$p$ [mWS]')\n", + "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[1].set_ylabel(r'$v$ [$\\mathrm{m} / \\mathrm{s}$]')\n", + "lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,'Pa','mWS')[0],marker='.')\n", + "lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.')\n", + "axs1[0].autoscale()\n", + "axs1[1].autoscale()\n", + "# displaying the reservoir level within each pipeline timestep\n", + "# axs1[2].set_title('Level reservoir')\n", + "# axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs1[2].set_ylabel(r'$h$ [m]')\n", + "# lo_02, = axs1[2].plot(level_vec_2)\n", + "# axs1[2].autoscale()\n", + "fig1.tight_layout()\n", + "plt.show()\n", + "plt.pause(1)\n", "\n", "# loop through time steps of the pipeline\n", "for it_pipe in range(1,pipe.nt):\n", "\n", "# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n", + " # set initial conditions for the reservoir time evolution calculted with e-RK4\n", " V.pressure = p_old[0]\n", " V.outflux = v_old[0]\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", " for it_res in range(nt_eRK4):\n", - " V.e_RK_4()\n", - " V.level = V.update_level(V.timestep)\n", - " V.set_volume()\n", - " level_vec_2[it_res] = V.level\n", - " if (V.level < critical_level_low) or (V.level > critical_level_high):\n", - " i_max = it_pipe\n", - " print('broke')\n", - " break\n", - " level_vec[it_pipe] = V.level\n", + " V.e_RK_4() # call e-RK4 to update outflux\n", + " V.level = V.update_level(V.timestep) # \n", + " V.set_volume() # update volume in reservoir\n", + " level_vec_2[it_res] = V.level # save for plotting\n", + " if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n", + " i_max = it_pipe # for plotting only calculated values\n", + " break \n", + " level_vec[it_pipe] = V.level \n", "\n", + " # set boundary conditions for the next timestep of the characteristic method\n", " p_boundary_res[it_pipe] = rho*g*V.level-v_old[1]**2*rho/2\n", " v_boundary_res[it_pipe] = v_old[1]+1/(rho*c)*(p_boundary_res[it_pipe]-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1] \\\n", " +dt*g*np.sin(alpha)\n", "\n", - "\n", + " # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n", " pipe.set_boundary_conditions_next_timestep(v_boundary_res[it_pipe],p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", " p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n", "\n", + " # perform the next timestep via the characteristic method\n", " pipe.timestep_characteristic_method()\n", "\n", - "\n", - " # lo_00.remove()\n", - " # lo_01.remove()\n", + " # plot some stuff\n", + " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " lo_00.remove()\n", + " lo_01.remove()\n", " # lo_02.remove()\n", - " # lo_00, = axs2[0].plot(pl_vec,pressure_conversion(pipe.p_old,'Pa','mWS')[0],marker='.',c='blue')\n", - " # lo_01, = axs2[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n", - " # lo_02, = axs2[2].plot(level_vec_2,c='blue')\n", - " # fig2.suptitle(str(it_pipe))\n", - " # fig2.canvas.draw()\n", - " # fig2.canvas.flush_events()\n", - " # fig2.tight_layout()\n", - " # plt.pause(0.1) \n", + " # plot new pressure and velocity distribution in the pipeline\n", + " lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,'Pa','mWS')[0],marker='.',c='blue')\n", + " lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n", + " # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n", + " fig1.suptitle(str(it_pipe))\n", + " fig1.canvas.draw()\n", + " fig1.tight_layout()\n", + " plt.pause(0.00001) \n", "\n", + " # prepare for next loop\n", " p_old = pipe.p_old\n", " v_old = pipe.v_old \n", "\n", @@ -218,26 +279,31 @@ "metadata": {}, "outputs": [], "source": [ - "%matplotlib qt5\n", - "fig1,axs1 = plt.subplots(3,2)\n", - "axs1[0,0].plot(t_vec,pressure_conversion(p_boundary_res,'Pa','mWS')[0])\n", - "axs1[0,1].plot(t_vec,v_boundary_res)\n", - "axs1[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,'Pa','mWS')[0])\n", - "axs1[1,1].plot(t_vec,v_boundary_tur)\n", - "axs1[2,0].plot(t_vec,level_vec)\n", - "axs1[0,0].set_title('Pressure Reservoir')\n", - "axs1[0,1].set_title('Velocity Reservoir')\n", - "axs1[1,0].set_title('Pressure Turbine')\n", - "axs1[1,1].set_title('Velocity Turbine')\n", - "axs1[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs1[0,0].set_ylabel(r'$p$ [mWS]')\n", - "axs1[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs1[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", - "axs1[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs1[1,0].set_ylabel(r'$p$ [mWS]')\n", - "axs1[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs1[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", - "fig1.tight_layout()\n", + "# plot time evolution of boundary pressure and velocity as well as the reservoir level\n", + "\n", + "fig2,axs2 = plt.subplots(3,2)\n", + "axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,'Pa','mWS')[0])\n", + "axs2[0,1].plot(t_vec,v_boundary_res)\n", + "axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,'Pa','mWS')[0])\n", + "axs2[1,1].plot(t_vec,v_boundary_tur)\n", + "axs2[2,0].plot(t_vec,level_vec)\n", + "axs2[0,0].set_title('Pressure reservoir')\n", + "axs2[0,1].set_title('Velocity reservoir')\n", + "axs2[1,0].set_title('Pressure turbine')\n", + "axs2[1,1].set_title('Velocity turbine')\n", + "axs2[2,0].set_title('Level reservoir')\n", + "axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[0,0].set_ylabel(r'$p$ [mWS]')\n", + "axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,0].set_ylabel(r'$p$ [mWS]')\n", + "axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[2,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[2,0].set_ylabel(r'$h$ [m]')\n", + "axs2[2,1].axis('off')\n", + "fig2.tight_layout()\n", "plt.show()" ] }