diff --git a/KW Arriach.ipynb b/KW Arriach.ipynb new file mode 100644 index 0000000..ade431e --- /dev/null +++ b/KW Arriach.ipynb @@ -0,0 +1,552 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print(level_vec[0]-np.min(level_vec))\n", + "# print(level_vec[np.argmin(np.abs(t_vec-600))])\n", + "# print(np.max(level_vec)-level_vec[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", + "parent = os.path.dirname(current)\n", + "sys.path.append(parent)\n", + "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", + "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", + "from Regler.Regler_class_file import PI_controller_class\n", + "from Turbinen.Turbinen_class_file import Francis_Turbine" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "i = 19\n", + "j = 6\n", + "\n", + "Kp_list = np.arange(0.1,2.1,0.1)\n", + "Area_list = np.arange(20.,160.,20.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define constants\n", + "\n", + " # for physics\n", + "g = 9.81 # [m/s²] gravitational acceleration \n", + "rho = 1000. # [kg/m³] density of water \n", + "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", + "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", + "\n", + " # for KW OL \n", + "OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T1_closingTime = 100. # [s] closing time of turbine\n", + "\n", + "OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T2_closingTime = 100. # [s] closing time of turbine\n", + "\n", + " # for KW UL\n", + "UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 160. # [s] closing time of turbine\n", + "\n", + "UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_closingTime = 160. # [s] closing time of turbine\n", + "\n", + " # for PI controller\n", + "Con_targetLevel = 2. # [m]\n", + "Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n", + "Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n", + "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", + "\n", + " # for pipeline\n", + "Pip_length = 2300. # [m] length of pipeline\n", + "Pip_dia = 1.0 # [m] diameter of pipeline\n", + "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", + "Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n", + "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", + "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", + "Pip_f_D = 0.015 # [-] Darcy friction factor\n", + "Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n", + " # derivatives of the pipeline constants\n", + "Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n", + "Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n", + "Pip_nn = Pip_n_seg+1 # [1] number of nodes\n", + "Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n", + "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n", + "\n", + " # for reservoir\n", + "Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n", + "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", + "Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", + "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", + "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", + "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", + "\n", + " # for general simulation\n", + "# flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n", + "OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", + "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", + "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", + "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create objects\n", + "\n", + "# influx setting turbines\n", + "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_OL = Kraftwerk_class()\n", + "KW_OL.add_turbine(OL_T1)\n", + "KW_OL.add_turbine(OL_T2)\n", + "\n", + "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_T1_p_nenn)\n", + "\n", + "flux_init = KW_OL.get_current_Q()\n", + "\n", + "# Upstream reservoir\n", + "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", + "reservoir.set_steady_state(flux_init,level_init)\n", + "\n", + "# pipeline\n", + "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", + "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", + "\n", + "# downstream turbines\n", + "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_UL = Kraftwerk_class()\n", + "KW_UL.add_turbine(UL_T1)\n", + "KW_UL.add_turbine(UL_T2)\n", + "\n", + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "\n", + "# level controller\n", + "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", + "level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# initialization for Timeloop\n", + "\n", + "# pipeline\n", + "v_old = pipe.get_current_velocity_distribution() # storing the velocity from the last timestep\n", + "v_min = pipe.get_lowest_velocity_per_node() # storing minimal flux velocity at each node\n", + "v_max = pipe.get_highest_velocity_per_node() # storing maximal flux velocity at each node\n", + "Q_old = pipe.get_current_flux_distribution() # storing the flux from the last timestep\n", + "Q_min = pipe.get_lowest_flux_per_node() # storing minimal flux at each node\n", + "Q_max = pipe.get_highest_flux_per_node() # storing maximal flux at each node\n", + "p_old = pipe.get_current_pressure_distribution() # storing the pressure from the last timestep\n", + "p_min = pipe.get_lowest_pressure_per_node() # storing minimal pressure at each node\n", + "p_max = pipe.get_highest_pressure_per_node() # storing maximal pressure at each node\n", + "p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n", + "\n", + "v_boundary_res = np.zeros_like(t_vec) # storing the boundary velocity at the reservoir\n", + "v_boundary_tur = np.zeros_like(t_vec) # storing the boundary velocity at the turbine\n", + "Q_boundary_res = np.zeros_like(t_vec) # storing the boundary flux at the reservoir\n", + "Q_boundary_tur = np.zeros_like(t_vec) # storing the boundary flux at the turbine\n", + "p_boundary_res = np.zeros_like(t_vec) # storing the boundary pressure at the reservoir\n", + "p_boundary_tur = np.zeros_like(t_vec) # storing the boundary pressure at the turbine\n", + "\n", + "v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n", + "v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n", + "Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n", + "Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n", + "p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n", + "p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n", + "\n", + "# reservoir\n", + "Q_in_vec = np.zeros_like(t_vec) # storing the influx to the reservoir\n", + "Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n", + "# Outflux from reservoir is stored in Q_boundary_res\n", + "level_vec = np.zeros_like(t_vec) # storing the level in the reservoir at the end of each pipeline timestep\n", + "level_vec[0] = level_init # storing the initial level in the reservoir\n", + "volume_vec = np.zeros_like(t_vec) # storing the volume in the reservoir at the end of each pipeline timestep\n", + "volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n", + "\n", + "# OL KW\n", + " # manual input to modulate influx\n", + "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = 1.\n", + "\n", + "\n", + "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", + "\n", + "\n", + "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "OL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "# UL KW\n", + "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n", + "\n", + "UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()\n", + "\n", + "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# %matplotlib qt5\n", + "# # displaying the guide vane openings\n", + "# fig0,axs0 = plt.subplots(1,1)\n", + "# axs0.set_title('LA')\n", + "# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", + "# axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", + "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs0.set_ylabel(r'$LA$ [%]')\n", + "# axs0.legend()\n", + "# plt.pause(2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib qt5\n", + "# Time loop\n", + "\n", + "# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "# fig1,axs1 = plt.subplots(3,1)\n", + "# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + "# axs1[0].set_title('Pressure distribution in pipeline')\n", + "# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')c\n", + "# axs1[0].set_ylim([-2,50])\n", + "# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", + "# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs1[1].set_ylim([-2,20])\n", + "# axs1[2].set_title('Flux distribution in pipeline')\n", + "# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "# axs1[2].set_ylim([-1,10])\n", + "# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", + "# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "\n", + "# # axs1[0].autoscale()\n", + "# # axs1[1].autoscale()\n", + "\n", + "# fig1.tight_layout()\n", + "# fig1.show()\n", + "# plt.pause(1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# needed for turbine convergence\n", + "convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n", + "\n", + "# loop through time steps of the pipeline\n", + "for it_pipe in range(1,nt+1):\n", + "\n", + " KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n", + " KW_OL.set_pressure(OL_T1_p_nenn)\n", + " Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n", + " reservoir.set_influx(Q_in_vec[it_pipe])\n", + "\n", + "# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n", + " # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n", + " reservoir.set_pressure(p_old[0],display_warning=False)\n", + " reservoir.set_outflux(Q_old[0],display_warning=False)\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", + " for it_res in range(Res_nt):\n", + " reservoir.timestep_reservoir_evolution() \n", + " level_vec[it_pipe] = reservoir.get_current_level() \n", + " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + "\n", + " level_control.update_control_variable(level_vec[it_pipe])\n", + " UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " \n", + " # change the guide vane opening based on the target value and closing time limitation\n", + " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n", + " OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n", + " UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n", + "\n", + " # set boundary condition for the next timestep of the characteristic method\n", + " convergence_parameters[0] = p_old[-2]\n", + " convergence_parameters[1] = v_old[-2]\n", + " convergence_parameters[9] = p_old[-1]\n", + " KW_UL.set_pressure(p_old[-1])\n", + " KW_UL.converge(convergence_parameters)\n", + " p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n", + " v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n", + " Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n", + "\n", + " # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine\n", + " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", + " # pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out) # unnecessary\n", + " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", + " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", + " Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n", + "\n", + " # perform the next timestep via the characteristic method\n", + " pipe.timestep_characteristic_method_vectorized()\n", + "\n", + " # prepare for next loop\n", + " p_old = pipe.get_current_pressure_distribution()\n", + " v_old = pipe.get_current_velocity_distribution()\n", + " Q_old = pipe.get_current_flux_distribution()\n", + "\n", + " # # plot some stuff\n", + " # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " # if it_pipe%50 == 0:\n", + " # lo_0.remove()\n", + " # lo_0min.remove()\n", + " # lo_0max.remove()\n", + " # lo_1.remove()\n", + " # lo_1min.remove()\n", + " # lo_1max.remove()\n", + " # lo_2.remove()\n", + " # lo_2min.remove()\n", + " # lo_2max.remove()\n", + " # # plot new pressure and velocity distribution in the pipeline\n", + " # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + " # fig1.canvas.draw()\n", + " # fig1.tight_layout()\n", + " # fig1.show()\n", + " # plt.pause(0.1) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Level and Volume reservoir')\n", + "# axs2.plot(t_vec,level_vec,label='level')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$h$ [m]')\n", + "# x_twin_00 = axs2.twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('LA')\n", + "# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$LA$ [%]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Fluxes')\n", + "# axs2.plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Min and Max Pressure')\n", + "# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "\n", + "# # fig2,axs2 = plt.subplots(1,1)\n", + "# # axs2.set_title('Min and Max Fluxes')\n", + "# # axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# # axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "# # axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# # axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "\n", + "\n", + "# fig2.tight_layout()\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n", + "axs3[0,0].set_title('Level and Volume reservoir')\n", + "axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "axs3[0,0].set_ylim(0,3.5)\n", + "x_twin_00 = axs3[0,0].twinx()\n", + "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "x_twin_00.plot(t_vec,volume_vec)\n", + "x_twin_00.set_ylim(0,3.5*Res_area_base)\n", + "axs3[0,0].legend()\n", + "\n", + "axs3[0,1].set_title('LA')\n", + "axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "axs3[0,1].legend()\n", + "\n", + "axs3[1,0].set_title('Fluxes')\n", + "axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "axs3[1,0].legend()\n", + "\n", + "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs3[1,1].legend()\n", + "\n", + "fig3.tight_layout()\n", + "plt.show()\n", + "\n", + "figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", + "fig3.savefig(figname)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(level_vec[0]-np.min(level_vec))\n", + "print(level_vec[np.argmin(np.abs(t_vec-600))])\n", + "print(np.max(level_vec)-level_vec[0])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/KW Hammer.ipynb b/KW Hammer.ipynb index c7013e0..9748476 100644 --- a/KW Hammer.ipynb +++ b/KW Hammer.ipynb @@ -27,20 +27,21 @@ "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import sys\n", "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", - "from functions.pressure_conversion import pressure_conversion\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", - "from Turbinen.Turbinen_class_file import Francis_Turbine\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", "from Regler.Regler_class_file import PI_controller_class\n", - "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class" + "from Turbinen.Turbinen_class_file import Francis_Turbine" ] }, { @@ -543,7 +544,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -562,7 +563,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } }, diff --git a/Untertweng.ipynb b/Untertweng.ipynb index 79eb643..d6c2f10 100644 --- a/Untertweng.ipynb +++ b/Untertweng.ipynb @@ -6,20 +6,21 @@ "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import sys\n", "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", - "from functions.pressure_conversion import pressure_conversion\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", - "from Turbinen.Turbinen_class_file import Francis_Turbine\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", "from Regler.Regler_class_file import PI_controller_class\n", - "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class" + "from Turbinen.Turbinen_class_file import Francis_Turbine" ] }, { @@ -471,7 +472,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -490,7 +491,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } }, diff --git a/Validation Data/Validation_Untertweng.ipynb b/Validation Data/Validation_Untertweng.ipynb index 0c5795a..f5127fa 100644 --- a/Validation Data/Validation_Untertweng.ipynb +++ b/Validation Data/Validation_Untertweng.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 188, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 190, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 191, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ "cmpr_val_UL_M2_LA = validation_data_UT['UL_T2_LA'].to_numpy(copy=True)/100.\n", "cmpr_val_UL_Ausl = validation_data_UT['Ausl'].to_numpy(copy=True)/100.\n", "\n", - "cmpr_val_UL_Ausl[cmpr_val_UL_Ausl<0.05] = 0.\n", + "# cmpr_val_UL_Ausl[cmpr_val_UL_Ausl<0.007] = 0.\n", "# cmpr_val_UL_Ausl[0] = 0.\n", "# cmpr_val_UL_Ausl[-1]= 0.\n", "\n", @@ -97,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 192, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -110,21 +110,21 @@ "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", "\n", " # for KW OL \n", - "OL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n", - "OL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T1_Q_nenn = 0.75 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(6.04,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "OL_T1_closingTime = 10. # [s] closing time of turbine\n", "\n", - "OL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n", - "OL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T2_Q_nenn = 0.75 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(6.04,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "OL_T2_closingTime = 10. # [s] closing time of turbine\n", "\n", " # for KW UL\n", - "UL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n", - "UL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_Q_nenn = 0.54 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(10.72,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "UL_T1_closingTime = 10. # [s] closing time of turbine\n", "\n", - "UL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n", - "UL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_Q_nenn = 0.96 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(10.72,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", "UL_T2_closingTime = 10. # [s] closing time of turbine\n", "\n", " # for PI controller\n", @@ -137,7 +137,7 @@ "Pip_length = (535.+478.) # [m] length of pipeline\n", "Pip_dia = 0.9 # [m] diameter of pipeline\n", "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", - "Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n", + "Pip_head = 115. # [m] hydraulic head of pipeline without reservoir\n", "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", "Pip_f_D = 0.014 # [-] Darcy friction factor\n", @@ -168,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 193, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -189,29 +189,7 @@ }, { "cell_type": "code", - "execution_count": 194, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 194, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%matplotlib qt5\n", - "plt.figure()\n", - "plt.plot(t_vec,val_UL_Ausl)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 195, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -354,27 +332,18 @@ }, { "cell_type": "code", - "execution_count": 198, + "execution_count": 10, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.1703345698765209\n" - ] - } - ], + "outputs": [], "source": [ - "flux_corr = (526.-444.)/trap_int(val_UL_Ausl,Pip_dt)\n", - "print(flux_corr)\n", + "flux_corr = (635.-444.)/trap_int(val_UL_Ausl,Pip_dt)\n", "\n", "# flux_corr = 0." ] }, { "cell_type": "code", - "execution_count": 199, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -460,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 200, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -526,7 +495,7 @@ }, { "cell_type": "code", - "execution_count": 201, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -574,16 +543,16 @@ }, { "cell_type": "code", - "execution_count": 202, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 202, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -597,16 +566,16 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 203, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -623,7 +592,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -631,7 +600,7 @@ "output_type": "stream", "text": [ "444.0\n", - "448.8083535188542\n" + "443.13951899767665\n" ] } ], @@ -643,7 +612,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -662,7 +631,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } }, diff --git a/Validation Data/raw data Tieferbach/sighting_validation_data.ipynb b/Validation Data/raw data Tieferbach/sighting_validation_data.ipynb index 4e21ab4..e071f62 100644 --- a/Validation Data/raw data Tieferbach/sighting_validation_data.ipynb +++ b/Validation Data/raw data Tieferbach/sighting_validation_data.ipynb @@ -104,7 +104,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.13 ('DT_Slot_3')", + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, @@ -123,7 +123,7 @@ "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48" + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" } } },