adaptations after convergence method improvements

This commit is contained in:
Brantegger Georg
2022-09-13 14:54:54 +02:00
parent b5e60dd083
commit ce368852ca
4 changed files with 103 additions and 66 deletions

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 35,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
"execution_count": 36,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -77,7 +77,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -94,7 +94,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -130,21 +130,23 @@
"ind_t_vec = np.linspace(t_vec[ind_t1]-(t2-t1)/2,t_vec[ind_t2]-(t2-t1)/2,ind_t2-ind_t1)\n",
"v_trans = v_old[-1]/(np.exp(ind_t_vec/(5e-2))+1)\n",
"v_boundary_tur[ind_t1:ind_t2] = v_trans\n",
"\n"
"\n",
"# v_boundary_tur[:np.argmin(np.abs(t_vec-1))] = v_old[-1] \n",
"# v_boundary_tur[np.argmin(np.abs(t_vec-1)):] = 0"
]
},
{
"cell_type": "code",
"execution_count": 39,
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1be29f29250>]"
"[<matplotlib.lines.Line2D at 0x1efa21574f0>]"
]
},
"execution_count": 39,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -159,7 +161,7 @@
},
{
"cell_type": "code",
"execution_count": 40,
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@@ -184,7 +186,7 @@
},
{
"cell_type": "code",
"execution_count": 41,
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@@ -232,7 +234,7 @@
},
{
"cell_type": "code",
"execution_count": 42,
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@@ -33,39 +33,39 @@
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 1000. # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T1_closingTime = 90. # [s] closing time of turbine\n",
"OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T1_closingTime = 100. # [s] closing time of turbine\n",
"\n",
"OL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T2_closingTime = 90. # [s] closing time of turbine\n",
"OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"OL_T2_closingTime = 100. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 90. # [s] closing time of turbine\n",
"UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 80. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 0.85/2 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 90. # [s] closing time of turbine\n",
"UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 80. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_targetLevel = 2. # [m]\n",
"\n",
" # for pipeline\n",
"Pip_length = (535.+478.) # [m] length of pipeline\n",
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.8 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
"Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
@@ -74,7 +74,7 @@
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = 74. # [m²] total base are of the cuboid reservoir \n",
"Res_area_base = 100. # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
@@ -83,16 +83,16 @@
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn)/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 500. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
@@ -129,7 +129,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -172,11 +172,11 @@
"\n",
"# OL KW\n",
" # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA())\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T2_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
@@ -186,10 +186,10 @@
"\n",
"# UL KW\n",
"UL_T1_LA_soll_vec = np.full_like(t_vec,UL_T1.get_current_LA()) # storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"UL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] -= 0.1\n",
"\n",
"UL_T2_LA_soll_vec = np.full_like(t_vec,UL_T2.get_current_LA()) # storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n",
"UL_T2_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] = 0.\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
@@ -200,7 +200,29 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# displaying the guide vane openings\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
@@ -213,15 +235,15 @@
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs1[0].set_ylim([-2,2])\n",
"axs1[0].set_ylim([-2,50])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-2,6])\n",
"axs1[1].set_ylim([-2,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,2])\n",
"axs1[2].set_ylim([-1,10])\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
@@ -242,12 +264,12 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt]\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
@@ -275,6 +297,7 @@
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" KW_UL.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
@@ -298,7 +321,7 @@
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%25 == 0:\n",
" if it_pipe%50 == 0:\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
@@ -322,12 +345,12 @@
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.000001) "
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
@@ -393,7 +416,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@@ -441,10 +464,20 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.015478260869565217\n"
]
}
],
"source": [
"print(np.sin(Pip_angle))"
]
}
],
"metadata": {

View File

@@ -192,7 +192,7 @@
"metadata": {},
"outputs": [],
"source": [
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt]\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through Con_T_ime steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
@@ -224,6 +224,7 @@
" turbine.set_pressure(p_old[-1])\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" turbine.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*turbine.get_current_Q()\n",

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -95,7 +95,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -136,7 +136,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -209,7 +209,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@@ -244,12 +244,12 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt]\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
@@ -281,6 +281,7 @@
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" KW_UL.converge(convergence_parameters)\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
@@ -304,7 +305,7 @@
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%25 == 0:\n",
" if it_pipe%100 == 0:\n",
" lo_p.remove()\n",
" lo_pmin.remove()\n",
" lo_pmax.remove()\n",
@@ -327,7 +328,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@@ -393,7 +394,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [