code cleanup:

consistenly use getter and setter methods
commenting etc
This commit is contained in:
Brantegger Georg
2022-07-27 11:40:58 +02:00
parent ac8bfdb7c6
commit d1c15090dc
13 changed files with 956 additions and 584 deletions

View File

@@ -0,0 +1,324 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from Regler_class_file import PI_controller_class\n",
"\n",
"#importing Druckrohrleitung\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#define constants\n",
"\n",
"#Turbine\n",
"Q_nenn = 0.85 # m³/s\n",
"p_nenn = pressure_conversion(10.6,'bar','Pa')\n",
"closing_time = 480. #s\n",
"\n",
"# physics\n",
"g = 9.81 # gravitational acceleration [m/s²]\n",
"rho = 1000. # density of water [kg/m³]\n",
"\n",
"# define controller constants\n",
"target_level = 8. # m\n",
"Kp = 0.01\n",
"Ti = 3600.\n",
"deadband_range = 0.05 # m\n",
"\n",
"# reservoir\n",
"initial_level = target_level\n",
"initial_influx = Q_nenn/2 # initial influx of volume to the reservoir [m³/s]\n",
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
"area_outflux = 1. # outflux area of the reservoir, given by pipeline area [m²]\n",
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
"\n",
"p0 = rho*g*initial_level-0.5*rho*(initial_influx/area_outflux)**2\n",
"\n",
"# offset the pressure in front of the turbine to get realisitc fluxes\n",
"h_fict = 100\n",
"offset_pressure = rho*g*h_fict\n",
"\n",
"t_max = 1e4 #s\n",
"dt = 1e-2 # simulation timestep\n",
"nt = int(t_max//dt) # number of simulation steps of reservoir in between timesteps of pipeline \n",
"\n",
"t_vec = np.arange(0,nt+1,1)*dt\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,dt)\n",
"V.set_steady_state(initial_influx,initial_level,conversion_pressure_unit)\n",
"\n",
"T1 = Francis_Turbine(Q_nenn,p_nenn,closing_time,dt)\n",
"T1.set_steady_state(initial_influx,p0+offset_pressure)\n",
"\n",
"Pegelregler = PI_controller_class(target_level,deadband_range,Kp,Ti,dt)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"level_vec = np.full(nt+1,V.level)\n",
"LA_ist_vec = np.full(nt+1,T1.LA)\n",
"LA_soll_vec = np.full(nt+1,T1.LA)\n",
"Q_vec = np.full(nt+1,initial_influx)\n",
"\n",
"Pegelregler.control_variable = T1.get_current_LA()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n",
"100.0\n",
"200.0\n",
"300.0\n",
"400.0\n",
"500.0\n",
"600.0\n",
"700.0\n",
"800.0\n",
"900.0\n",
"1000.0\n",
"1100.0\n",
"1200.0\n",
"1300.0\n",
"1400.0\n",
"1500.0\n",
"1600.0\n",
"1700.0\n",
"1800.0\n",
"1900.0\n",
"2000.0\n",
"2100.0\n",
"2200.0\n",
"2300.0\n",
"2400.0\n",
"2500.0\n",
"2600.0\n",
"2700.0\n",
"2800.0\n",
"2900.0\n",
"3000.0\n",
"3100.0\n",
"3200.0\n",
"3300.0\n",
"3400.0\n",
"3500.0\n",
"3600.0\n",
"3700.0\n",
"3800.0\n",
"3900.0\n",
"4000.0\n",
"4100.0\n",
"4200.0\n",
"4300.0\n",
"4400.0\n",
"4500.0\n",
"4600.0\n",
"4700.0\n",
"4800.0\n",
"4900.0\n",
"5000.0\n",
"5100.0\n",
"5200.0\n",
"5300.0\n",
"5400.0\n",
"5500.0\n",
"5600.0\n",
"5700.0\n",
"5800.0\n",
"5900.0\n",
"6000.0\n",
"6100.0\n",
"6200.0\n",
"6300.0\n",
"6400.0\n",
"6500.0\n",
"6600.0\n",
"6700.0\n",
"6800.0\n",
"6900.0\n",
"7000.0\n",
"7100.0\n",
"7200.0\n",
"7300.0\n",
"7400.0\n",
"7500.0\n",
"7600.0\n",
"7700.0\n",
"7800.0\n",
"7900.0\n",
"8000.0\n",
"8100.0\n",
"8200.0\n",
"8300.0\n",
"8400.0\n",
"8500.0\n",
"8600.0\n",
"8700.0\n",
"8800.0\n",
"8900.0\n",
"9000.0\n",
"9100.0\n",
"9200.0\n",
"9300.0\n",
"9400.0\n",
"9500.0\n",
"9600.0\n",
"9700.0\n",
"9800.0\n",
"9900.0\n"
]
}
],
"source": [
"# time loop\n",
"\n",
"for i in range(nt+1):\n",
"\n",
" if np.mod(i,1e4) == 0:\n",
" print(t_vec[i])\n",
"\n",
" if i == 0.4*(nt+1):\n",
" V.set_influx(0.)\n",
"\n",
" p = V.get_current_pressure()\n",
" Pegelregler.update_control_variable(V.level)\n",
" LA_soll = Pegelregler.get_current_control_variable()\n",
" T1.update_LA(LA_soll)\n",
" T1.set_pressure(p+offset_pressure)\n",
" LA_soll_vec[i] = LA_soll\n",
" LA_ist_vec[i] = T1.get_current_LA()\n",
" Q_vec[i] = T1.get_current_Q()\n",
"\n",
" \n",
" V.set_outflux(Q_vec[i])\n",
"\n",
" V.timestep_reservoir_evolution() \n",
" \n",
" level_vec[i] = V.get_current_level()\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# time loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"axs1[0].set_title('Level')\n",
"axs1[0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[0].set_ylabel(r'$h$ [$\\mathrm{m}$]')\n",
"axs1[0].plot(t_vec,level_vec)\n",
"axs1[0].set_ylim([0*initial_level,1.5*initial_level])\n",
"axs1[1].set_title('Flux')\n",
"axs1[1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m} / \\mathrm{s}^3$]')\n",
"axs1[1].plot(t_vec,Q_vec)\n",
"axs1[1].set_ylim([0,2*initial_influx])\n",
"axs1[2].set_title('LA')\n",
"axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[2].set_ylabel(r'$LA$ [%]')\n",
"axs1[2].plot(t_vec,LA_soll_vec)\n",
"axs1[2].plot(t_vec,LA_ist_vec)\n",
"axs1[2].set_ylim([0,1])\n",
"fig1.tight_layout()\n",
"fig1.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1caf15caca0>]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig2 = plt.figure()\n",
"plt.plot(t_vec,Pegelregler.get_error_history())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}