code cleanup:

consistenly use getter and setter methods
commenting etc
This commit is contained in:
Brantegger Georg
2022-07-27 11:40:58 +02:00
parent ac8bfdb7c6
commit d1c15090dc
13 changed files with 956 additions and 584 deletions

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -17,15 +17,16 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#define constants\n",
"\n",
"#Turbine\n",
"Q_nenn = 0.85\n",
"p_nenn = pressure_conversion(10.6,'bar','Pa')\n",
"Q_nenn = 0.85 # m³/s\n",
"p_nenn = pressure_conversion(10.6,'bar','Pa')\n",
"closing_time = 30 #s\n",
"\n",
"# physics\n",
"g = 9.81 # gravitational acceleration [m/s²]\n",
@@ -37,35 +38,31 @@
"A_pipe = D**2/4*np.pi # pipeline area\n",
"h_pipe = 105 # hydraulic head without reservoir [m] \n",
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
"n = 50 # number of pipe segments in discretization\n",
"n = 200 # number of pipe segments in discretization\n",
"# consider replacing Q0 with a vector be be more flexible in initial conditions\n",
"# Q0 = Q_nenn # initial flow in whole pipe [m³/s]\n",
"# v0 = Q0/A_pipe # initial flow velocity [m/s]\n",
"f_D = 0.014 # Darcy friction factor\n",
"c = 500. # propagation velocity of the pressure wave [m/s]\n",
"# consider prescribing a total simulation time and deducting the number of timesteps from that\n",
"nt = 3000 # number of time steps after initial conditions\n",
"nt = 20000 # number of time steps after initial conditions\n",
"\n",
"# derivatives of the pipeline constants\n",
"dx = L/n # length of each pipe segment\n",
"dt = dx/c # timestep according to method of characterisitics\n",
"nn = n+1 # number of nodes\n",
"initial_level = 8. # water level in upstream reservoir [m]\n",
"# p0 = rho*g*initial_level-v0**2*rho/2\n",
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
"pl_vec = np.arange(0,nn,1)*dx # pl = pipe-length. position of the nodes on the pipeline\n",
"t_vec = np.arange(0,nt+1)*dt # time vector\n",
"h_vec = np.arange(0,n+1)*h_pipe/n # hydraulic head of pipeline at each node \n",
"# v_init = np.full(nn,Q0/(D**2/4*np.pi)) # initial velocity distribution in pipeline\n",
"# p_init = (rho*g*(initial_level+h_vec)-v_init**2*rho/2)-(f_D*pl_vec/D*rho/2*v_init**2) # ref Wikipedia: Darcy Weisbach\n",
"h_vec = np.arange(0,nn,1)*h_pipe/n # hydraulic head of pipeline at each node \n",
"\n",
"\n",
"\n",
"# reservoir\n",
"# replace influx by vector\n",
"initial_influx = Q_nenn/1.1 # initial influx of volume to the reservoir [m³/s]\n",
"# initial_outflux = Q0 # initial outflux of volume from the reservoir to the pipeline [m³/s]\n",
"# initial_pipeline_pressure = p0 # Initial condition for the static pipeline pressure at the reservoir (= hydrostatic pressure - dynamic pressure) \n",
"initial_flux = Q_nenn/1.1 # initial influx of volume to the reservoir [m³/s]\n",
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
"area_outflux = A_pipe # outlfux area of the reservoir, given by pipeline area [m²]\n",
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
@@ -78,43 +75,28 @@
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Ideas for checks after constant definitions: \n",
"\n",
"- Check that the initial pressure is not negative:\n",
" - may happen, if there is too little hydraulic head to create the initial flow conditions with the given friction\n",
"<br>\n",
"<br>\n",
"- plausbility checks?\n",
" - area > area_outflux ?\n",
" - propable ranges for parameters?\n",
" - angle and height/length fit together?\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,simulation_timestep)\n",
"V.set_steady_state(initial_influx,initial_level,conversion_pressure_unit)\n",
"V.set_steady_state(initial_flux,initial_level,conversion_pressure_unit)\n",
"\n",
"\n",
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
"pipe.set_pressure_propagation_velocity(c)\n",
"pipe.set_number_of_timesteps(nt)\n",
"pipe.set_steady_state(initial_influx,V.level,pl_vec,h_vec)\n",
"pipe.set_steady_state(initial_flux,initial_level,pl_vec,h_vec)\n",
"\n",
"initial_pressure_turbine = pipe.get_current_pressure_distribution()[-1]\n",
"\n",
"T1 = Francis_Turbine(Q_nenn,p_nenn,closing_time,timestep = dt)\n",
"T1.set_steady_state(initial_flux,initial_pressure_turbine)\n",
"\n",
"T1 = Francis_Turbine(Q_nenn,p_nenn)\n",
"T1.set_steady_state(initial_influx,pipe.p0[-1])\n",
"T1.set_closing_time(30)\n",
"\n",
"# display the attributes of the created reservoir and pipeline object\n",
"# V.get_info(full=True)\n",
@@ -123,19 +105,19 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# initialization for timeloop\n",
"\n",
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
"v_old = pipe.v0.copy()\n",
"p_old = pipe.p0.copy()\n",
"v_old = pipe.get_current_velocity_distribution()\n",
"p_old = pipe.get_current_pressure_distribution()\n",
"\n",
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
" # through the time evolution of the reservoir respectively \n",
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir follow from boundary conditions\n",
" # reservoir level and flow through turbine\n",
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
"v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n",
@@ -143,8 +125,7 @@
"p_boundary_tur = np.zeros_like(t_vec)\n",
"\n",
"# prepare the vectors that store the temporal evolution of the level in the reservoir\n",
"level_vec = np.full(nt+1,V.level) # level at the end of each pipeline timestep\n",
"level_vec_2 = np.zeros([nt_eRK4]) # level throughout each reservoir timestep-used for plotting and overwritten afterwards\n",
"level_vec = np.full(nt+1,initial_level) # level at the end of each pipeline timestep\n",
"\n",
"# set the boundary conditions for the first timestep\n",
"v_boundary_res[0] = v_old[0]\n",
@@ -153,14 +134,15 @@
"p_boundary_tur[0] = p_old[-1]\n",
"\n",
"LA_soll_vec = np.full_like(t_vec,T1.LA)\n",
"LA_soll_vec[1500:]= 0\n",
"LA_soll_vec[500:]= 0\n",
"LA_ist_vec = np.full_like(t_vec,T1.LA)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -176,16 +158,11 @@
"axs1[0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$v$ [$\\mathrm{m} / \\mathrm{s}$]')\n",
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit),marker='.')\n",
"lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.')\n",
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,initial_pressure_unit, conversion_pressure_unit),marker='.')\n",
"lo_01, = axs1[1].plot(pl_vec,v_old,marker='.')\n",
"axs1[0].autoscale()\n",
"axs1[1].autoscale()\n",
"# displaying the reservoir level within each pipeline timestep\n",
"# axs1[2].set_title('Level reservoir')\n",
"# axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs1[2].set_ylabel(r'$h$ [m]')\n",
"# lo_02, = axs1[2].plot(level_vec_2)\n",
"# axs1[2].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)\n"
@@ -193,60 +170,62 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,pipe.nt+1):\n",
"\n",
" if t_vec[it_pipe]>20:\n",
" if V.get_current_influx() > 0:\n",
" V.set_influx(np.max([V.get_current_influx()-initial_flux*5*1e-3,0.]))\n",
"\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
" V.pressure = p_old[0]\n",
" V.outflux_vel = v_old[0]\n",
" V.set_pressure = p_old[0]\n",
" V.set_outflux = v_old[0]*area_outflux\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(nt_eRK4):\n",
" V.e_RK_4() # call e-RK4 to update outflux\n",
" V.level = V.update_level(V.timestep) # \n",
" V.update_volume() # update volume in reservoir\n",
" level_vec_2[it_res] = V.level # save for plotting\n",
" if (V.level < critical_level_low) or (V.level > critical_level_high): # make sure to never exceed critical levels\n",
" i_max = it_pipe # for plotting only calculated values\n",
" break \n",
" level_vec[it_pipe] = V.level \n",
" V.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = V.get_current_level() \n",
"\n",
" # change the Leitapparatöffnung based on the target value\n",
" T1.update_LA(LA_soll_vec[it_pipe])\n",
" T1.set_pressure(p_old[-1])\n",
"\n",
" LA_ist_vec[it_pipe] = T1.LA\n",
"\n",
" # set boundary conditions for the next timestep of the characteristic method\n",
" p_boundary_res[it_pipe] = rho*g*V.level-V.outflux_vel**2*rho/2\n",
"\n",
" T1.change_LA(LA_soll_vec[it_pipe],dt)\n",
" v_boundary_tur[it_pipe] = 1/A_pipe*T1.get_Q(p_old[-1])\n",
" p_boundary_res[it_pipe] = V.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/A_pipe*T1.get_current_Q()\n",
"\n",
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" p_boundary_tur[it_pipe] = pipe.p_boundary_tur\n",
" v_boundary_res[it_pipe] = pipe.v_boundary_res\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" pipe.timestep_characteristic_method()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_00.remove()\n",
" lo_01.remove()\n",
" # lo_02.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(pipe.p_old,initial_pressure_unit, conversion_pressure_unit),marker='.',c='blue')\n",
" lo_01, = axs1[1].plot(pl_vec,pipe.v_old,marker='.',c='blue')\n",
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,initial_pressure_unit, conversion_pressure_unit),marker='.',c='blue')\n",
" lo_01, = axs1[1].plot(pl_vec,v_old,marker='.',c='blue')\n",
" # lo_02, = axs1[2].plot(level_vec_2,c='blue')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) \n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.p_old\n",
" v_old = pipe.v_old \n",
" plt.pause(0.001) \n",
"\n",
" \n",
" "
@@ -254,35 +233,44 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plot time evolution of boundary pressure and velocity as well as the reservoir level\n",
"\n",
"fig2,axs2 = plt.subplots(3,2)\n",
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,initial_pressure_unit, conversion_pressure_unit))\n",
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
"axs2[0,1].set_ylim(-2*Q_nenn,+2*Q_nenn)\n",
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,initial_pressure_unit, conversion_pressure_unit))\n",
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
"axs2[2,0].plot(t_vec,level_vec)\n",
"axs2[0,0].set_title('Pressure reservoir')\n",
"axs2[0,1].set_title('Velocity reservoir')\n",
"axs2[1,0].set_title('Pressure turbine')\n",
"axs2[1,1].set_title('Velocity turbine')\n",
"axs2[2,0].set_title('Level reservoir')\n",
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,initial_pressure_unit, conversion_pressure_unit))\n",
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[0,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
"\n",
"axs2[0,1].set_title('Velocity reservoir')\n",
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
"axs2[0,1].set_ylim(-2*Q_nenn,+2*Q_nenn)\n",
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"\n",
"axs2[1,0].set_title('Pressure turbine')\n",
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,initial_pressure_unit, conversion_pressure_unit))\n",
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
"\n",
"axs2[1,1].set_title('Velocity turbine')\n",
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"\n",
"axs2[2,0].set_title('Level reservoir')\n",
"axs2[2,0].plot(t_vec,level_vec)\n",
"axs2[2,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[2,0].set_ylabel(r'$h$ [m]')\n",
"axs2[2,1].axis('off')\n",
"\n",
"axs2[2,1].set_title('LA')\n",
"axs2[2,1].plot(t_vec,100*LA_soll_vec)\n",
"axs2[2,1].plot(t_vec,100*LA_ist_vec)\n",
"axs2[2,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[2,1].set_ylabel(r'$LA$ [%]')\n",
"fig2.tight_layout()\n",
"plt.show()"
]