diff --git a/.gitignore b/.gitignore index 4289dd7..655ce1c 100644 --- a/.gitignore +++ b/.gitignore @@ -5,4 +5,14 @@ Messing Around/ Messing Around/messy_nb.ipynb Validation Data/ -Druckrohrleitung/GIF Plots/ \ No newline at end of file +Druckrohrleitung/GIF Plots/ +*__pycache__/ +.vscode/settings.json +*.pyc +Messing Around/ +Validation Data/ +Druckrohrleitung/Gif Plots +Simulation Hammer/ +Simulation Arriach/ +log.txt + diff --git a/Ausgleichsbecken/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/Ausgleichsbecken_class_file.py index 69652dc..31af119 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/Ausgleichsbecken_class_file.py @@ -1,20 +1,26 @@ -from logging import exception +# import modules for general use +import os # to import functions from other folders +import sys # to import functions from other folders +from logging import \ + exception # to throw an exception when a specific condition is met + import numpy as np #importing pressure conversion function -import sys -import os current = os.path.dirname(os.path.realpath(__file__)) parent = os.path.dirname(current) sys.path.append(parent) from functions.pressure_conversion import pressure_conversion + def FODE_function(x_out,h,A,A_a,p,rho,g): # (FODE ... first order differential equation) + # describes the change in outflux velocity from a reservoir # based on the outflux formula by Andreas Malcherek # https://www.youtube.com/watch?v=8HO2LwqOhqQ # adapted for a pressurized pipeline into which the reservoir effuses - # and flow direction + # and flow direction + # see documentation in word-file # x_out ... effusion velocity # h ... level in the reservoir # A_a ... Area_outflux @@ -27,14 +33,14 @@ def FODE_function(x_out,h,A,A_a,p,rho,g): class Ausgleichsbecken_class: # units - # make sure that units and display units are the same - # units are used to label graphs and disp units are used to have a bearable format when using pythons print() + # make sure that units and display units are the same! + # units are used to label graphs and disp units are used to have good formatting when using pythons print() area_unit = r'$\mathrm{m}^2$' area_outflux_unit = r'$\mathrm{m}^2$' density_unit = r'$\mathrm{kg}/\mathrm{m}^3$' flux_unit = r'$\mathrm{m}^3/\mathrm{s}$' level_unit = 'm' - pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion + pressure_unit = 'Pa' # !DO NOT CHANGE! needed for pressure conversion time_unit = 's' velocity_unit = r'$\mathrm{m}/\mathrm{s}$' volume_unit = r'$\mathrm{m}^3$' @@ -53,6 +59,7 @@ class Ausgleichsbecken_class: # init + # see docstring below def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.): """ Creates a reservoir with given attributes in this order: \n @@ -60,8 +67,8 @@ class Ausgleichsbecken_class: Outflux Area [m²] \n Simulation timestep [s] \n Pressure unit for displaying [string] \n - Minimal level [m] \n - Maximal level [m] \n + Minimum level [m] \n + Maximum level [m] \n Density of the liquid [kg/m³] \n """ #set initial attributes @@ -73,7 +80,8 @@ class Ausgleichsbecken_class: self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying self.timestep = timestep # timestep in the time evolution method - # initialize for get_info() (if get_info() gets called before set_steady_state() is executed) + # initialize for get_info() (if get_info() gets called before set_steady_state() was ever executed) + # is also used to check if set_steady_state() was ever executed self.influx = -np.inf self.outflux = -np.inf self.level = -np.inf @@ -95,7 +103,7 @@ class Ausgleichsbecken_class: if self.pressure == -np.inf: self.pressure = initial_pressure else: - raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.') + raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based on current level.') def set_influx(self,influx): # sets influx to the reservoir in m³/s @@ -141,7 +149,7 @@ class Ausgleichsbecken_class: ss_outflux = ss_influx ss_influx_vel = abs(ss_influx/self.area) ss_outflux_vel = abs(ss_outflux/self.area_out) - # see confluence doc for explaination on how to arrive at the ss pressure formula + # see word document for explaination on how to arrive at the ss pressure formula ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel) # use setter methods to set the attributes to their steady state values @@ -153,6 +161,7 @@ class Ausgleichsbecken_class: # getter - return attributes def get_info(self, full = False): # prints out the info on the current state of the reservoir + # full = True gives more info new_line = '\n' if self.pressure != np.inf: p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp) @@ -187,7 +196,8 @@ class Ausgleichsbecken_class: f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}" f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}" f"----------------------------- {new_line}") - + + # print the info to console print(print_str) def get_current_influx(self): @@ -208,10 +218,15 @@ class Ausgleichsbecken_class: # update methods - update attributes based on some parameter def update_level(self,timestep,set_flag=False): # update level based on net flux and timestep by calculating the volume change in - # the timestep and the converting the new volume to a level by assuming a cuboid reservoir + # the timestep and then convert the new volume to a level by assuming a cuboid reservoir + # there is no call of the update_volume() function because I need the updated level from half a timestep in the reservoir evolution + # if update_volume() was called within this function, the script would produce wrong results. net_flux = self.influx-self.outflux delta_level = net_flux*timestep/self.area level_new = (self.level+delta_level) + # raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop + if level_new < 0.01: + raise Exception('Reservoir ran emtpy') # set flag is necessary because update_level() is used to get a halfstep value in the time evoultion if set_flag == True: self.set_level(level_new,display_warning=False) @@ -220,7 +235,7 @@ class Ausgleichsbecken_class: def update_pressure(self,set_flag=False): # update pressure based on level and flux velocities - # see confluence doc for explaination + # see word document for explaination influx_vel = abs(self.influx/self.area) outflux_vel = abs(self.outflux/self.area_out) p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel) @@ -241,6 +256,7 @@ class Ausgleichsbecken_class: #methods def timestep_reservoir_evolution(self): # update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir + # solve the FODE of the outflux velocity for one timestep using explicit four step Runge-Kutta method # get some variables dt = self.timestep diff --git a/Druckrohrleitung/Druckrohrleitung_class_file.py b/Druckrohrleitung/Druckrohrleitung_class_file.py index 4ca2021..9175e18 100644 --- a/Druckrohrleitung/Druckrohrleitung_class_file.py +++ b/Druckrohrleitung/Druckrohrleitung_class_file.py @@ -1,13 +1,18 @@ +# import modules for general use +import os # to import functions from other folders +import sys # to import functions from other folders +from logging import \ + exception # to throw an exception when a specific condition is met + import numpy as np #importing pressure conversion function -import sys -import os current = os.path.dirname(os.path.realpath(__file__)) parent = os.path.dirname(current) sys.path.append(parent) from functions.pressure_conversion import pressure_conversion + class Druckrohrleitung_class: # units # make sure that units and display units are the same @@ -37,6 +42,7 @@ class Druckrohrleitung_class: g = 9.81 # m/s² gravitational acceleration # init + # see docstring below def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000): """ Creates a reservoir with given attributes in this order: \n @@ -152,6 +158,7 @@ class Druckrohrleitung_class: ss_v0 = np.full_like(self.x_vec,ss_flux/self.A) # the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses + # dynamic pressure does not play a role, because it has the same influence on both sides of the equation (constant flow velocity) and therefore cancels out ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2) # set the initial conditions @@ -160,6 +167,7 @@ class Druckrohrleitung_class: # getter - return attributes def get_info(self): + # prints out the info on the current state of the reservoir new_line = '\n' angle_deg = round(self.angle/np.pi*180,3) @@ -180,8 +188,11 @@ class Druckrohrleitung_class: f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}" f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}" f"----------------------------- {new_line}" - f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object") + f"Velocity and pressure distribution are vectors and are accessible via the {new_line} \ + get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. {new_line} \ + See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.") + # print the info to console print(print_str) def get_current_pressure_distribution(self,disp_flag=False): @@ -198,12 +209,14 @@ class Druckrohrleitung_class: return self.v*self.A def get_lowest_pressure_per_node(self,disp_flag=False): + # disp_flag if one wants to directly plot the return of this method if disp_flag == True: # convert to pressure unit disp return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp) elif disp_flag == False: # stay in Pa return self.p_min def get_highest_pressure_per_node(self,disp_flag=False): + # disp_flag if one wants to directly plot the return of this method if disp_flag == True: # convert to pressure unit disp return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp) elif disp_flag == False: # stay in Pa @@ -229,8 +242,8 @@ class Druckrohrleitung_class: return self.p0 def timestep_characteristic_method(self): - # use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones - # they are set with the .set_boundary_conditions_next_timestep() method beforehand + # use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones + # they are set with the .set_boundary_conditions_next_timestep() method beforehand # constants for cleaner formula nn = self.n_seg+1 # number of nodes @@ -242,7 +255,7 @@ class Druckrohrleitung_class: g = self.g # graviational acceleration alpha = self.angle # pipeline angle - # Vectorize this loop? + # Vectorized loop see below for i in range(1,nn-1): self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \ +dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1]) @@ -263,8 +276,9 @@ class Druckrohrleitung_class: self.v_old = self.v.copy() def timestep_characteristic_method_vectorized(self): - # use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones - # they are set with the .set_boundary_conditions_next_timestep() method beforehand + # faster then above + # use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones + # they are set with the .set_boundary_conditions_next_timestep() method beforehand # constants for cleaner formula rho = self.density # density of liquid diff --git a/Druckrohrleitung/Druckstoß Visualisierung.ipynb b/Druckrohrleitung/Druckstoß Visualisierung.ipynb index 81ff80e..9421864 100644 --- a/Druckrohrleitung/Druckstoß Visualisierung.ipynb +++ b/Druckrohrleitung/Druckstoß Visualisierung.ipynb @@ -70,7 +70,7 @@ " # for general simulation\n", "flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", - "simTime_target = 10. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "simTime_target = 3. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" ] @@ -79,6 +79,23 @@ "cell_type": "code", "execution_count": 11, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "61.1829727786757\n" + ] + } + ], + "source": [ + "print(pressure_conversion(600000,'Pa','mWS'))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ "# create objects\n", @@ -94,18 +111,20 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# initialization for timeloop\n", + "reservoir.set_influx = 0.\n", "\n", "level_vec = np.zeros_like(t_vec)\n", "level_vec[0] = reservoir.get_current_level()\n", "\n", "# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n", - "v_old = pipe.get_current_velocity_distribution()\n", - "p_old = pipe.get_current_pressure_distribution()\n", + "v_old = pipe.get_current_velocity_distribution()\n", + "p_old = pipe.get_current_pressure_distribution()\n", + "p_0 = pipe.get_initial_pressure_distribution()\n", "\n", "# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n", " # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n", @@ -135,30 +154,6 @@ "# v_boundary_tur[np.argmin(np.abs(t_vec-1)):] = 0" ] }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%matplotlib qt5\n", - "fig = plt.figure()\n", - "plt.plot(v_trans)\n", - "fig = plt.figure()\n", - "plt.plot(t_vec,v_boundary_tur)" - ] - }, { "cell_type": "code", "execution_count": 14, @@ -166,21 +161,35 @@ "outputs": [], "source": [ "%matplotlib qt5\n", - "fig1,axs1 = plt.subplots(2,1)\n", + "# Time loop\n", + "\n", + "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "fig1,axs1 = plt.subplots(3,1, figsize=(16,9))\n", + "fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", "axs1[0].set_title('Pressure distribution in pipeline')\n", "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "axs1[0].set_ylabel(r'$p$ [mWS]')\n", - "axs1[0].autoscale()\n", - "lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa',pUnit_conv),marker='.')\n", - "\n", - "axs1[1].set_title('Velocity distribution in pipeline')\n", + "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[0].set_ylim([-2,200])\n", + "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", - "axs1[1].set_ylabel(r'$v$ [m/s]')\n", - "lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n", - "# axs1[1].autoscale()\n", - "axs1[1].set_ylim([-1.5,1.5])\n", + "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[1].set_ylim([-76,76])\n", + "axs1[2].set_title('Flux distribution in pipeline')\n", + "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "axs1[2].set_ylim([-1.5,1.5])\n", + "lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_2, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n", + "lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_velocity_per_node(),c='red')\n", + "lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_velocity_per_node(),c='red')\n", "\n", "fig1.tight_layout()\n", + "fig1.show()\n", "plt.pause(1)" ] }, @@ -219,17 +228,38 @@ " # plot some stuff\n", " if it_pipe%100 == 0:\n", " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", - " lo_00.remove()\n", - " lo_01.remove()\n", - " # lo_02.remove()\n", + " lo_0.remove()\n", + " lo_0min.remove()\n", + " lo_0max.remove()\n", + " lo_1.remove()\n", + " lo_1min.remove()\n", + " lo_1max.remove()\n", + " lo_2.remove()\n", + " lo_2min.remove()\n", + " lo_2max.remove()\n", " # plot new pressure and velocity distribution in the pipeline\n", - " lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa', pUnit_conv),marker='.',c='blue')\n", - " lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.',c='blue')\n", - " \n", - " fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n", + " lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " fig1.suptitle(str(round(t_vec[it_pipe]-1,2))+ ' s / '+str(round(t_vec[-1]-1,2)) + ' s' )\n", " fig1.canvas.draw()\n", " fig1.tight_layout()\n", - " plt.pause(0.000001)" + " fig1.show()\n", + " # if int(it_pipe/100) < 10:\n", + " # figname = 'GIF Plots\\ GIF00'+str(int(it_pipe/100))+'.png'\n", + " # elif int(it_pipe/100) < 100:\n", + " # figname = 'GIF Plots\\ GIF0'+str(int(it_pipe/100))+'.png'\n", + " # else:\n", + " # figname = 'GIF Plots\\ GIF'+str(int(it_pipe/100))+'.png'\n", + " # print(figname)\n", + " # fig1.savefig(fname=figname)\n", + " plt.pause(0.000001) " ] }, { @@ -245,11 +275,11 @@ "axs2[0,0].set_ylabel(r'$p$ [mWS]')\n", "axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))])\n", "\n", - "axs2[1,1].set_title('Velocity Reservoir')\n", - "axs2[1,1].plot(t_vec,v_boundary_res)\n", - "axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", - "axs2[1,1].set_ylim([-1.1*np.max(v_boundary_res),1.1*np.max(v_boundary_res)])\n", + "axs2[1,0].set_title('Velocity Reservoir')\n", + "axs2[1,0].plot(t_vec,v_boundary_res)\n", + "axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,0].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[1,0].set_ylim([-1.1*np.max(v_boundary_res),1.1*np.max(v_boundary_res)])\n", "\n", "axs2[0,1].set_title('Pressure Turbine')\n", "axs2[0,1].plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))\n", @@ -257,11 +287,11 @@ "axs2[0,1].set_ylabel(r'$p$ [mWS]')\n", "axs2[0,1].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))])\n", "\n", - "axs2[1,0].set_title('Velocity Turbine')\n", - "axs2[1,0].plot(t_vec,v_boundary_tur)\n", - "axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs2[1,0].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", - "axs2[1,0].set_ylim([-0.1,1.05*np.max(v_boundary_tur)])\n", + "axs2[1,1].set_title('Velocity Turbine')\n", + "axs2[1,1].plot(t_vec,v_boundary_tur)\n", + "axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n", + "axs2[1,1].set_ylim([-0.1,1.05*np.max(v_boundary_tur)])\n", "\n", "fig2.tight_layout()\n", "plt.show()" diff --git a/KW Vorlage.ipynb b/KW Vorlage.ipynb new file mode 100644 index 0000000..9442804 --- /dev/null +++ b/KW Vorlage.ipynb @@ -0,0 +1,742 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Markdown for converting jupyter notebook into a python script for looping\n", + "- make a copy of \"KW Vorlage.ipynb\" (will be deleted later)\n", + "- changes to called functions\n", + " - in the Ausgleichsbecken_class file, in the update_level() method, comment out the raise_Exception('Reservoir ran empty') lines 228/229\n", + " - this might lead to a warning, for a divide by 0 situation, which can usually be ignored:\n", + " - RuntimeWarning: invalid value encountered in double_scalars: f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)\n", + "- changes to code cells\n", + " - for code cell 1\n", + " - delete last code section \"backup...\"\n", + " - toggle comment\n", + " - change Area_, Kp_ and Ti_list for loop\n", + " - for code cell 2\n", + " - make adaptions outlined in markdown above\n", + " - delete markdown cell\n", + " - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n", + " - for code cell 3\n", + " - make adaptions outlined in markdown above\n", + " - delete markdown cell\n", + " - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n", + " - for code cell 4\n", + " - delete entire code cell to avoid printing too much to console\n", + " - for code cell 5\n", + " - make adaptions outlined in markdown above\n", + " - delete markdown cell\n", + " - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n", + " - for code cell 6\n", + " - delete entire code cell because plotting the guide vane opening is not necessary in loop scenario\n", + " - for code cell 7\n", + " - delete entire code cell because plotting is not necessary in loop scenario and costs performance\n", + " - for code cell 8\n", + " - make adaptions outlined in markdown above\n", + " - delete markdown cell\n", + " - delete the section from line 65 to the bottom - plotting is not necessary\n", + " - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n", + " - for code cell 9\n", + " - delete entire code cell because plotting is handled in code cell 10\n", + " - for code cell 10\n", + " - make adaptions outlined in markdown above\n", + " - delete markdown cell\n", + " - delete/comment out line 52 plt.show(), which stops the loop until the figure is closed\n", + " - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n", + "- delete first markdown cell\n", + "- converting to Python file\n", + " - click \"Export\"\n", + " - choose Python script\n", + " - save Pyhton script with proper name\n", + "- (optional) format Python script\n", + " - select \"# %%\"\n", + " - press and hold \"strg\", press and hold \"d\" (selects all occurances of \"# %%\" after a few seconds)\n", + " - press \"strg\"+\"shift\"+\"K\" once to delete all lines that are selected\n", + "- final touches\n", + " - run the loop with a small test set and fix everything i forgot ;-)\n", + " - delete the copied \"KW Vorlage copy.ipynb\"\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 0\n", + "import os\n", + "import sys\n", + "from datetime import datetime\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", + "parent = os.path.dirname(current)\n", + "sys.path.append(parent)\n", + "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", + "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", + "from Regler.Regler_class_file import PI_controller_class\n", + "from Turbinen.Turbinen_class_file import Francis_Turbine" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 1\n", + "# for loop creation\n", + "\n", + "# Area_list = np.round(np.arange(40.,90.,5.),1)\n", + "# Kp_list = np.round(np.arange(0.1,3.0,0.2),1)\n", + "# Ti_list = np.round(np.arange(10.,300.,10.),1)\n", + "\n", + "# # # if one wants to use the loop to save 1 specific configuration:\n", + "# # desired_area = 60\n", + "# # desired_KP = 0.7\n", + "# # desired_ti = 200.\n", + "\n", + "# # Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n", + "# # Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n", + "# # Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n", + "\n", + "# for i in range(np.size(Area_list)):\n", + "# for j in range(np.size(Kp_list)):\n", + "# for k in range(np.size(Ti_list)):\n", + "# now = datetime.now()\n", + "# current_time = now.strftime(\"%H:%M:%S\")\n", + "# print(\"Current Time =\", current_time)\n", + "\n", + "# print('i = ',i, '/ ', str(np.size(Area_list)-1))\n", + "# print('j = ',j, '/ ', str(np.size(Kp_list)-1))\n", + "# print('k = ',k, '/ ', str(np.size(Ti_list)-1))\n", + "# print('area = ',Area_list[i])\n", + "# print('K_p = ',Kp_list[j])\n", + "# print('T_i = ',Ti_list[k])\n", + "\n", + "# with open('log.txt','a') as f:\n", + "# f.write(\"Current Time =\" + current_time + '\\n')\n", + "# f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\\n')\n", + "# f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\\n')\n", + "# f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\\n')\n", + "# f.write('area = '+str(Area_list[i])+ '\\n')\n", + "# f.write('K_p = '+str(Kp_list[j])+ '\\n')\n", + "# f.write('T_i = '+str(Ti_list[k])+ '\\n')\n", + "\n", + "# backup if script is used as jupyter notebook\n", + "desired_area = 60\n", + "desired_KP = 0.7\n", + "desired_ti = 200.\n", + "\n", + "Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n", + "Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n", + "Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n", + "i = 0\n", + "j = 0\n", + "k = 0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- adapt tubine parameters\n", + "- adapt controller parameters\n", + "- adapt pipeline parameters\n", + "- adapt reservoir parameters\n", + "- see end of code cell 1 for reservoir base area, controller K_p and T_i\n", + "\n", + "- choose between initialization by flux or guide vane opening - toggle comment in lines 62/63\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 2\n", + "# define constants\n", + "\n", + " # for physics\n", + "g = 9.81 # [m/s²] gravitational acceleration \n", + "rho = 0.9982067*1e3 # [kg/m³] density of water \n", + "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", + "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", + "\n", + " # for KW OL \n", + "OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n", + "OL_T1_closingTime = 30. # [s] closing time of turbine\n", + "\n", + " # simulation of \"Bacheinzug\"\n", + "OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_T2_closingTime = 600. # [s] closing time of turbine\n", + "\n", + " # for KW UL\n", + "UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 30. # [s] closing time of turbine\n", + "\n", + "UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_closingTime = 30. # [s] closing time of turbine\n", + "\n", + " # for PI controller\n", + "Con_targetLevel = 1.25 # [m] target level of the PI controller\n", + "Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller\n", + "Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term\n", + "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", + "\n", + " # for pipeline\n", + "Pip_length = 2300. # [m] length of pipeline\n", + "Pip_dia = 1.5 # [m] diameter of pipeline\n", + "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", + "Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n", + "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", + "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", + "Pip_f_D = 0.015 # [-] Darcy friction factor\n", + "Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n", + " # derivatives of the pipeline constants\n", + "Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n", + "Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n", + "Pip_nn = Pip_n_seg+1 # [1] number of nodes\n", + "Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n", + "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir\n", + "\n", + " # for reservoir\n", + "Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir \n", + "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", + "Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", + "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", + "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", + "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", + "\n", + " # for general simulation\n", + "# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n", + "OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", + "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", + "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", + "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 3\n", + "# create objects\n", + "\n", + "# influx setting turbines\n", + "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_OL = Kraftwerk_class()\n", + "KW_OL.add_turbine(OL_T1)\n", + "KW_OL.add_turbine(OL_T2)\n", + "\n", + "# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n", + "\n", + "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n", + "flux_init = KW_OL.get_current_Q()\n", + "\n", + "# Upstream reservoir\n", + "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", + "reservoir.set_steady_state(flux_init,level_init)\n", + "\n", + "# pipeline\n", + "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", + "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", + "\n", + "# downstream turbines\n", + "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_UL = Kraftwerk_class()\n", + "KW_UL.add_turbine(UL_T1)\n", + "KW_UL.add_turbine(UL_T2)\n", + "\n", + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "\n", + "# level controller\n", + "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", + "level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 4\n", + "# using the get_info() methods\n", + "\n", + "# print(KW_OL.get_info())\n", + "# print(reservoir.get_info(full=True))\n", + "# print(pipe.get_info())\n", + "# print(KW_UL.get_info())\n", + "# print(level_control.get_info())\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- change the influx through the OL HPP by manually setting the guide vane openings\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 5\n", + "# initialization for Timeloop\n", + "\n", + "# OL KW\n", + " # manual input to modulate influx\n", + "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s \n", + "\n", + "\n", + "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", + "\n", + "# creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop\n", + "\n", + "# reservoir\n", + "Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir\n", + "Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n", + "# Outflux from reservoir is stored in Q_boundary_res\n", + "level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep\n", + "level_vec[0] = level_init # storing the initial level in the reservoir\n", + "volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep\n", + "volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n", + "\n", + "# pipeline\n", + "v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep\n", + "v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node\n", + "v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node\n", + "Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep\n", + "Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node\n", + "Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node\n", + "p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep\n", + "p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node\n", + "p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node\n", + "p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n", + "\n", + "v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir\n", + "v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine\n", + "Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir\n", + "Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine\n", + "p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir\n", + "p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine\n", + "\n", + "v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n", + "v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n", + "Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n", + "Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n", + "p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n", + "p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n", + "\n", + "# OL KW\n", + "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "OL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "# UL KW\n", + "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n", + "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T2_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n", + "UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n", + "UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 6\n", + "# displaying the guide vane openings\n", + "# for plot in separate window\n", + "%matplotlib qt5 \n", + "\n", + "fig0,axs0 = plt.subplots(1,1)\n", + "axs0.set_title('LA')\n", + "axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n", + "axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", + "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs0.set_ylabel(r'$LA$ [%]')\n", + "axs0.legend()\n", + "plt.pause(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 7\n", + "# create the figure in which the evolution of the pipeline will be displayed\n", + "%matplotlib qt5\n", + "\n", + "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "fig1,axs1 = plt.subplots(3,1)\n", + "fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + "axs1[0].set_title('Pressure distribution in pipeline')\n", + "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[0].set_ylim([-2,80])\n", + "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", + "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs1[1].set_ylim([-40,20])\n", + "axs1[2].set_title('Flux distribution in pipeline')\n", + "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "axs1[2].set_ylim([-1,10])\n", + "# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n", + "lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", + "lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "\n", + "# axs1[0].autoscale()\n", + "# axs1[1].autoscale()\n", + "\n", + "fig1.tight_layout()\n", + "fig1.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- in line 10 OL_p_pseudo is used" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 8\n", + "# time loop\n", + "# needed for turbine convergence\n", + "convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n", + "\n", + "# loop through time steps of the pipeline\n", + "for it_pipe in range(1,nt+1):\n", + "\n", + " # update OL_KW and the influx into the reservoir\n", + " KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n", + " KW_OL.set_pressure(OL_p_pseudo)\n", + " Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n", + " reservoir.set_influx(Q_in_vec[it_pipe])\n", + "\n", + "# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n", + " # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n", + " reservoir.set_pressure(p_old[0],display_warning=False)\n", + " reservoir.set_outflux(Q_old[0],display_warning=False)\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", + " for it_res in range(Res_nt):\n", + " reservoir.timestep_reservoir_evolution() \n", + " # save the level and the volume in the reservoir \n", + " level_vec[it_pipe] = reservoir.get_current_level() \n", + " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + "\n", + " # update target value for UL_KW from the level controller\n", + " level_control.update_control_variable(level_vec[it_pipe])\n", + " UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " \n", + " # change the guide vane opening based on the target value and closing time limitation\n", + " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n", + " # save the actual guide vane openings\n", + " OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n", + " UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n", + "\n", + " # set boundary condition for the next timestep of the characteristic method\n", + " convergence_parameters[0] = p_old[-2]\n", + " convergence_parameters[1] = v_old[-2]\n", + " convergence_parameters[9] = p_old[-1]\n", + " KW_UL.set_pressure(p_old[-1])\n", + " # use the convergence method to avoid numerical errors\n", + " KW_UL.converge(convergence_parameters)\n", + " # save the first set of boundary conditions\n", + " p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n", + " v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n", + " Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n", + "\n", + " # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine\n", + " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", + " # save the second set of boundary conditions\n", + " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", + " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", + " Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n", + "\n", + " # perform the next timestep via the characteristic method\n", + " # use vectorized method for performance\n", + " pipe.timestep_characteristic_method_vectorized()\n", + "\n", + " # prepare for next loop\n", + " p_old = pipe.get_current_pressure_distribution()\n", + " v_old = pipe.get_current_velocity_distribution()\n", + " Q_old = pipe.get_current_flux_distribution()\n", + "\n", + " # plot some stuff\n", + " # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n", + " lo_0.remove()\n", + " lo_0min.remove()\n", + " lo_0max.remove()\n", + " lo_1.remove()\n", + " lo_1min.remove()\n", + " lo_1max.remove()\n", + " lo_2.remove()\n", + " lo_2min.remove()\n", + " lo_2max.remove()\n", + " # plot new pressure and velocity distribution in the pipeline\n", + " lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + " fig1.canvas.draw() # force figure output\n", + " fig1.tight_layout()\n", + " fig1.show()\n", + " plt.pause(0.1) " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 9\n", + "# plot some stuff in separate windows\n", + "\n", + "level_plot_min = 0\n", + "level_plot_max = 3\n", + "volume_plot_min = level_plot_min*Res_area_base\n", + "volume_plot_max = level_plot_max*Res_area_base\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Level and Volume reservoir')\n", + "axs2.plot(t_vec,level_vec,label='level')\n", + "axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$h$ [m]')\n", + "axs2.set_ylim(level_plot_min,level_plot_max)\n", + "x_twin_00 = axs2.twinx()\n", + "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "x_twin_00.plot(t_vec,volume_vec)\n", + "x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", + "axs2.legend()\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('LA')\n", + "axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$LA$ [%]')\n", + "axs2.legend()\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs2.legend()\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Fluxes')\n", + "axs2.plot(t_vec,Q_in_vec,label='Influx')\n", + "axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", + "axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "axs2.legend()\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Min and Max Pressure')\n", + "axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", + "axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", + "axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "\n", + "fig2,axs2 = plt.subplots(1,1)\n", + "axs2.set_title('Min and Max Fluxes')\n", + "axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "\n", + "fig2.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Adaptions to fit specific project \n", + "- change level_plot_min and _max\n", + "- check that folder for saving figures is present in same directory as this file\n", + "- change name of the saved file in line 54: Vorlage -> ..." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# code cell 10\n", + "# code for plotting and safing the figures generated in the loop\n", + "\n", + "# level_plot_min = 0\n", + "# level_plot_max = 3\n", + "# volume_plot_min = level_plot_min*Res_area_base\n", + "# volume_plot_max = level_plot_max*Res_area_base\n", + "\n", + "# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n", + "# axs3[0,0].set_title('Level and Volume reservoir')\n", + "# axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "# axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n", + "# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "# axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n", + "# x_twin_00 = axs3[0,0].twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", + "# axs3[0,0].legend()\n", + "\n", + "# axs3[0,1].set_title('LA')\n", + "# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "# axs3[0,1].legend()\n", + "\n", + "# axs3[1,0].set_title('Fluxes')\n", + "# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs3[1,0].legend()\n", + "\n", + "# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs3[1,1].legend()\n", + "\n", + "# fig3.tight_layout()\n", + "# plt.show()\n", + "\n", + "# figname = 'Simulation Vorlage\\KW_Vorlage_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", + "# fig3.savefig(figname)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Kraftwerk/Kraftwerk_class_file.py b/Kraftwerk/Kraftwerk_class_file.py index dfd5b7d..b0a57e1 100644 --- a/Kraftwerk/Kraftwerk_class_file.py +++ b/Kraftwerk/Kraftwerk_class_file.py @@ -1,20 +1,33 @@ +# import modules for general use +import os # to import functions from other folders +import sys # to import functions from other folders +from logging import \ + exception # to throw an exception when a specific condition is met + import numpy as np -#importing Druckrohrleitung -import sys -import os -current = os.path.dirname(os.path.realpath('Main_Programm.ipynb')) + +#importing pressure conversion function +current = os.path.dirname(os.path.realpath(__file__)) parent = os.path.dirname(current) sys.path.append(parent) from functions.pressure_conversion import pressure_conversion from Turbinen.Turbinen_class_file import Francis_Turbine + class Kraftwerk_class: g = 9.81 def __init__(self): + # create an empty powerhouse + # see add_turbine() method self.turbines = [] self.n_turbines = 0 + def add_turbine(self,turbine): + # add a turbine object from the turbine class + self.turbines.append(turbine) + self.n_turbines += 1 + # setter def set_LAs(self,LA_vec,display_warning=True): for i in range(self.n_turbines): @@ -24,10 +37,14 @@ class Kraftwerk_class: for i in range(self.n_turbines): self.turbines[i].set_pressure(pressure) - def set_steady_state(self,ss_flux,ss_pressure): + def set_steady_state_by_flux(self,ss_flux,ss_pressure): self.identify_Q_proportion() for i in range(self.n_turbines): - self.turbines[i].set_steady_state(ss_flux*self.Q_prop[i],ss_pressure) + self.turbines[i].set_steady_state_by_flux(ss_flux*self.Q_prop[i],ss_pressure) + + def set_steady_state_by_LA(self,LA_vec,ss_pressure): + for i in range(self.n_turbines): + self.turbines[i].set_steady_state_by_LA(LA_vec[i],ss_pressure) # getter def get_current_Q(self): @@ -57,14 +74,11 @@ class Kraftwerk_class: # methods def identify_Q_proportion(self): + # calculate the proportions of the nominal fluxes of all turbines in the powerhouse Q_n_vec = np.zeros(self.n_turbines) for i in range(self.n_turbines): Q_n_vec[i] = self.turbines[i].get_Q_n() self.Q_prop = Q_n_vec/np.sum(Q_n_vec) - - def add_turbine(self,turbine): - self.turbines.append(turbine) - self.n_turbines += 1 def update_LAs(self,LA_soll_vec): for i in range(self.n_turbines): @@ -73,7 +87,7 @@ class Kraftwerk_class: def converge(self,convergence_parameters): # small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the # new pressure from the forward characteristic are not perfectly compatible. - # Therefore, iterate the flux and the pressure so long, until they converge + # Therefore, iterate the flux and the pressure so long, until they converge - i honestly have no idea why that works :D (steady state test prove it right ¯\_(ツ)_/¯) eps = 1e-12 # convergence criterion: iteration change < eps iteration_change = 1. # change in Q from one iteration to the next diff --git a/Regler/Regler_class_file.py b/Regler/Regler_class_file.py index 5b9135b..01e389a 100644 --- a/Regler/Regler_class_file.py +++ b/Regler/Regler_class_file.py @@ -1,4 +1,5 @@ import numpy as np + #based on https://en.wikipedia.org/wiki/PID_controller#Discrete_implementation # performance parameters for controllers @@ -129,7 +130,7 @@ class PI_controller_class: def get_info(self): new_line = '\n' # :<10 pads the self.value to be 10 characters wide - print_str = (f"Turbine has the following attributes: {new_line}" + print_str = (f"Controller has the following attributes: {new_line}" f"----------------------------- {new_line}" f"Type = PI Controller {new_line}" f"Setpoint = {self.SP:<10} {new_line}" diff --git a/Turbinen/Turbinen_class_file.py b/Turbinen/Turbinen_class_file.py index 3156722..2958db2 100644 --- a/Turbinen/Turbinen_class_file.py +++ b/Turbinen/Turbinen_class_file.py @@ -1,15 +1,16 @@ +import os +import sys + import numpy as np +from pyparsing import alphanums #importing pressure conversion function -import sys -import os - -from pyparsing import alphanums current = os.path.dirname(os.path.realpath(__file__)) parent = os.path.dirname(current) sys.path.append(parent) from functions.pressure_conversion import pressure_conversion + class Francis_Turbine: # units # make sure that units and display units are the same @@ -71,7 +72,7 @@ class Francis_Turbine: # set pressure in front of the turbine self.p = pressure - def set_steady_state(self,ss_flux,ss_pressure): + def set_steady_state_by_flux(self,ss_flux,ss_pressure): # calculate and set steady state LA, that allows the flow of ss_flux at ss_pressure through the # turbine at the steady state LA ss_LA = self.LA_n*ss_flux/self.Q_n*np.sqrt(self.p_n/ss_pressure) @@ -81,6 +82,14 @@ class Francis_Turbine: self.set_pressure(ss_pressure) self.get_current_Q() + def set_steady_state_by_LA(self,ss_LA,ss_pressure): + # set the turbine to a steady state defined by the pressure and the guide vane opening (LeitApparatöffnung) + if ss_LA < 0 or ss_LA > 1: + raise Exception('LA out of range [0;1]') + self.set_LA(ss_LA,display_warning=False) + self.set_pressure(ss_pressure) + self.get_current_Q() + #getter - get attributes def get_current_Q(self): # return the flux through the turbine, based on the current pressure in front @@ -154,7 +163,7 @@ class Francis_Turbine: def converge(self,convergence_parameters): # small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the # new pressure from the forward characteristic are not perfectly compatible. - # Therefore, iterate the flux and the pressure so long, until they converge + # Therefore, iterate the flux and the pressure so long, until they converge - i honestly have no idea why that works :D (steady state test prove it right ¯\_(ツ)_/¯) eps = 1e-12 # convergence criterion: iteration change < eps iteration_change = 1. # change in Q from one iteration to the next @@ -193,4 +202,3 @@ class Francis_Turbine: if i == 1e6: print('did not converge') break - # print(i) \ No newline at end of file diff --git a/old/KW Arriach loop.py b/old/KW Arriach loop.py new file mode 100644 index 0000000..7a08ba9 --- /dev/null +++ b/old/KW Arriach loop.py @@ -0,0 +1,323 @@ +import os +import sys +from datetime import datetime + +import matplotlib.pyplot as plt +import numpy as np + +current = os.path.dirname(os.path.realpath('Main_Programm.ipynb')) +parent = os.path.dirname(current) +sys.path.append(parent) +from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class +from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class +from functions.pressure_conversion import pressure_conversion +from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class +from Regler.Regler_class_file import PI_controller_class +from Turbinen.Turbinen_class_file import Francis_Turbine + +Area_list = np.round(np.arange(40.,90.,5.),1) +Kp_list = np.round(np.arange(0.1,3.0,0.2),1) +Ti_list = np.round(np.arange(10.,300.,10.),1) + +for i in range(np.size(Area_list)): + for j in range(np.size(Kp_list)): + for k in range(np.size(Ti_list)): + now = datetime.now() + current_time = now.strftime("%H:%M:%S") + print("Current Time =", current_time) + + print('i = ',i, '/ ', str(np.size(Area_list)-1)) + print('j = ',j, '/ ', str(np.size(Kp_list)-1)) + print('k = ',k, '/ ', str(np.size(Ti_list)-1)) + print('area = ',Area_list[i]) + print('K_p = ',Kp_list[j]) + print('T_i = ',Ti_list[k]) + + with open('log.txt','a') as f: + f.write("Current Time =" + current_time + '\n') + f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\n') + f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\n') + f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\n') + f.write('area = '+str(Area_list[i])+ '\n') + f.write('K_p = '+str(Kp_list[j])+ '\n') + f.write('T_i = '+str(Ti_list[k])+ '\n') + + + # define constants + + # for physics + g = 9.81 # [m/s²] gravitational acceleration + rho = 0.9982067*1e3 # [kg/m³] density of water + pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels + pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels + + # for KW OL + OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine + OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv + OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding + OL_T1_closingTime = 30. # [s] closing time of turbine + + # simulation of "Bacheinzug" + OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine + OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv + OL_T2_closingTime = 600. # [s] closing time of turbine + + # for KW UL + UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine + UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine + UL_T1_closingTime = 30. # [s] closing time of turbine + + UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine + UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine + UL_T2_closingTime = 30. # [s] closing time of turbine + + # for PI controller + Con_targetLevel = 1.25 # [m] + Con_K_p = Kp_list[j] # [-] proportional constant of PI controller + Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term + Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene + + # for pipeline + Pip_length = 2300. # [m] length of pipeline + Pip_dia = 1.5 # [m] diameter of pipeline + Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline + Pip_head = 68. # [m] hydraulic head of pipeline without reservoir + Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline + Pip_n_seg = 50 # [-] number of pipe segments in discretization + Pip_f_D = 0.015 # [-] Darcy friction factor + Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline + # derivatives of the pipeline constants + Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment + Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics + Pip_nn = Pip_n_seg+1 # [1] number of nodes + Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline + Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir + + # for reservoir + Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir + Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area + Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings + Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings + Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.) + Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline + Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution + + # for general simulation + # flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization + OL_LAs_init = [1./1.1,0.3] # [vec] initial guide vane openings of OL-KW + level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization + simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt) + nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system + t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored + + # create objects + + # influx setting turbines + OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv) + OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv) + + KW_OL = Kraftwerk_class() + KW_OL.add_turbine(OL_T1) + KW_OL.add_turbine(OL_T2) + + KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo) + + flux_init = KW_OL.get_current_Q() + + # Upstream reservoir + reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho) + reservoir.set_steady_state(flux_init,level_init) + + # pipeline + pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho) + pipe.set_steady_state(flux_init,reservoir.get_current_pressure()) + + # downstream turbines + UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv) + UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv) + + KW_UL = Kraftwerk_class() + KW_UL.add_turbine(UL_T1) + KW_UL.add_turbine(UL_T2) + + KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1]) + + # level controller + level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt) + level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False) + + # initialization for Timeloop + + # pipeline + v_old = pipe.get_current_velocity_distribution() # storing the velocity from the last timestep + v_min = pipe.get_lowest_velocity_per_node() # storing minimal flux velocity at each node + v_max = pipe.get_highest_velocity_per_node() # storing maximal flux velocity at each node + Q_old = pipe.get_current_flux_distribution() # storing the flux from the last timestep + Q_min = pipe.get_lowest_flux_per_node() # storing minimal flux at each node + Q_max = pipe.get_highest_flux_per_node() # storing maximal flux at each node + p_old = pipe.get_current_pressure_distribution() # storing the pressure from the last timestep + p_min = pipe.get_lowest_pressure_per_node() # storing minimal pressure at each node + p_max = pipe.get_highest_pressure_per_node() # storing maximal pressure at each node + p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node + + v_boundary_res = np.zeros_like(t_vec) # storing the boundary velocity at the reservoir + v_boundary_tur = np.zeros_like(t_vec) # storing the boundary velocity at the turbine + Q_boundary_res = np.zeros_like(t_vec) # storing the boundary flux at the reservoir + Q_boundary_tur = np.zeros_like(t_vec) # storing the boundary flux at the turbine + p_boundary_res = np.zeros_like(t_vec) # storing the boundary pressure at the reservoir + p_boundary_tur = np.zeros_like(t_vec) # storing the boundary pressure at the turbine + + v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir + v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine + Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir + Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine + p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir + p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine + + # reservoir + Q_in_vec = np.zeros_like(t_vec) # storing the influx to the reservoir + Q_in_vec[0] = flux_init # storing the initial influx to the reservoir + # Outflux from reservoir is stored in Q_boundary_res + level_vec = np.zeros_like(t_vec) # storing the level in the reservoir at the end of each pipeline timestep + level_vec[0] = level_init # storing the initial level in the reservoir + volume_vec = np.zeros_like(t_vec) # storing the volume in the reservoir at the end of each pipeline timestep + volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir + + # OL KW + # manual input to modulate influx + OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening + OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. + OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] + + OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening + + OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening + OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening + + OL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening + OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening + + # UL KW + UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening + UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() + + UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening + UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA() + + UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening + UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening + + UL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening + UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening + + # time loop + # needed for turbine convergence + convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]] + + # loop through time steps of the pipeline + for it_pipe in range(1,nt+1): + + KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]]) + KW_OL.set_pressure(OL_p_pseudo) + Q_in_vec[it_pipe] = KW_OL.get_current_Q() + reservoir.set_influx(Q_in_vec[it_pipe]) + + # for each pipeline timestep, execute Res_nt timesteps of the reservoir code + # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method + reservoir.set_pressure(p_old[0],display_warning=False) + reservoir.set_outflux(Q_old[0],display_warning=False) + # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error + for it_res in range(Res_nt): + reservoir.timestep_reservoir_evolution() + level_vec[it_pipe] = reservoir.get_current_level() + volume_vec[it_pipe] = reservoir.get_current_volume() + + level_control.update_control_variable(level_vec[it_pipe]) + UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() + UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() + + # change the guide vane opening based on the target value and closing time limitation + KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]]) + OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs() + UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs() + + # set boundary condition for the next timestep of the characteristic method + convergence_parameters[0] = p_old[-2] + convergence_parameters[1] = v_old[-2] + convergence_parameters[9] = p_old[-1] + KW_UL.set_pressure(p_old[-1]) + KW_UL.converge(convergence_parameters) + p_boundary_res[it_pipe] = reservoir.get_current_pressure() + v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q() + Q_boundary_tur[it_pipe] = KW_UL.get_current_Q() + + # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine + pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe]) + # pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out) # unnecessary + p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1] + v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0] + Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0] + + # perform the next timestep via the characteristic method + pipe.timestep_characteristic_method_vectorized() + + # prepare for next loop + p_old = pipe.get_current_pressure_distribution() + v_old = pipe.get_current_velocity_distribution() + Q_old = pipe.get_current_flux_distribution() + + level_plot_min = 0 + level_plot_max = 3 + volume_plot_min = level_plot_min*Res_area_base + volume_plot_max = level_plot_max*Res_area_base + + fig3,axs3 = plt.subplots(2,2,figsize=(16,9)) + fig3.suptitle('Fläche = '+str(Res_area_base)+'\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i)) + axs3[0,0].set_title('Level and Volume reservoir') + axs3[0,0].plot(t_vec,level_vec,label='level') + axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r') + axs3[0,0].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[0,0].set_ylabel(r'$h$ [m]') + axs3[0,0].set_ylim(level_plot_min,level_plot_max) + x_twin_00 = axs3[0,0].twinx() + x_twin_00.set_ylabel(r'$V$ [$\mathrm{m}^3$]') + x_twin_00.plot(t_vec,volume_vec) + x_twin_00.set_ylim(volume_plot_min,volume_plot_max) + axs3[0,0].legend() + + axs3[0,1].set_title('LA') + axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b') + axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+') + axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g') + axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+') + axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r') + axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+') + axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k') + axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+') + axs3[0,1].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[0,1].set_ylabel(r'$LA$ [%]') + axs3[0,1].legend() + + axs3[1,0].set_title('Fluxes') + axs3[1,0].plot(t_vec,Q_in_vec,label='Influx') + axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux') + axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+') + axs3[1,0].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[1,0].set_ylabel(r'$Q$ [$\mathrm{m}^3/\mathrm{s}$]') + axs3[1,0].legend() + + axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine') + axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir') + axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine') + axs3[1,1].set_xlabel(r'$t$ [$\mathrm{s}$]') + axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']') + axs3[1,1].legend() + + fig3.tight_layout() + # plt.show() + plt.close() + + figname = 'Simulation Arriach\\Lastfall_2\\KW_Arriach_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp_'+str(Con_K_p)+'.png' + fig3.savefig(figname) + + diff --git a/KW Hammer.ipynb b/old/KW Arriach.ipynb similarity index 73% rename from KW Hammer.ipynb rename to old/KW Arriach.ipynb index e125a32..1951e7b 100644 --- a/KW Hammer.ipynb +++ b/old/KW Arriach.ipynb @@ -2,29 +2,49 @@ "cells": [ { "cell_type": "code", - "execution_count": 41, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import sys\n", "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", - "from functions.pressure_conversion import pressure_conversion\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", - "from Turbinen.Turbinen_class_file import Francis_Turbine\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", "from Regler.Regler_class_file import PI_controller_class\n", - "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class" + "from Turbinen.Turbinen_class_file import Francis_Turbine" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# if script is used as jupyter notebook\n", + "desired_area = 60\n", + "desired_KP = 0.7\n", + "desired_ti = 200.\n", + "\n", + "Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n", + "Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n", + "Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n", + "i = 0\n", + "j = 0\n", + "k = 0" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -32,36 +52,41 @@ "\n", " # for physics\n", "g = 9.81 # [m/s²] gravitational acceleration \n", - "rho = 1000. # [kg/m³] density of water \n", + "rho = 0.9982067*1e3 # [kg/m³] density of water \n", "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", "\n", " # for KW OL \n", - "OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "OL_T1_closingTime = 100. # [s] closing time of turbine\n", + "OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n", + "OL_T1_closingTime = 30. # [s] closing time of turbine\n", "\n", - "OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "OL_T2_closingTime = 100. # [s] closing time of turbine\n", + " # simulation of \"Bacheinzug\"\n", + "OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n", + "OL_T2_closingTime = 600. # [s] closing time of turbine\n", "\n", " # for KW UL\n", - "UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "UL_T1_closingTime = 80. # [s] closing time of turbine\n", + "UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 30. # [s] closing time of turbine\n", "\n", - "UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", - "UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", - "UL_T2_closingTime = 80. # [s] closing time of turbine\n", + "UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_closingTime = 30. # [s] closing time of turbine\n", "\n", " # for PI controller\n", - "Con_targetLevel = 2. # [m]\n", + "Con_targetLevel = 1.25 # [m]\n", + "Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n", + "Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n", + "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", "\n", " # for pipeline\n", "Pip_length = 2300. # [m] length of pipeline\n", - "Pip_dia = 1.8 # [m] diameter of pipeline\n", + "Pip_dia = 1.5 # [m] diameter of pipeline\n", "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", - "Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n", + "Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n", "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", "Pip_f_D = 0.015 # [-] Darcy friction factor\n", @@ -74,38 +99,31 @@ "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n", "\n", " # for reservoir\n", - "Res_area_base = 100. # [m²] total base are of the cuboid reservoir \n", + "Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n", "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", - "Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n", "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", "\n", " # for general simulation\n", - "flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n", + "# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n", + "OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", - "simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# create objects\n", "\n", - "# Upstream reservoir\n", - "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", - "reservoir.set_steady_state(flux_init,level_init)\n", - "\n", - "# pipeline\n", - "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", - "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", - "\n", "# influx setting turbines\n", "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", "OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n", @@ -114,7 +132,18 @@ "KW_OL.add_turbine(OL_T1)\n", "KW_OL.add_turbine(OL_T2)\n", "\n", - "KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n", + "# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n", + "\n", + "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n", + "flux_init = KW_OL.get_current_Q()\n", + "\n", + "# Upstream reservoir\n", + "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", + "reservoir.set_steady_state(flux_init,level_init)\n", + "\n", + "# pipeline\n", + "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", + "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", "\n", "# downstream turbines\n", "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", @@ -124,12 +153,29 @@ "KW_UL.add_turbine(UL_T1)\n", "KW_UL.add_turbine(UL_T2)\n", "\n", - "KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n" + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "\n", + "# level controller\n", + "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", + "level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# print(reservoir.get_info(full=True))\n", + "\n", + "# print(pipe.get_info())\n", + "# print(pipe.v)\n", + "# print(pipe.p)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -174,9 +220,9 @@ " # manual input to modulate influx\n", "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0]\n", "\n", - "\n", - "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", "\n", "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", @@ -185,11 +231,11 @@ "OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", "\n", "# UL KW\n", - "UL_T1_LA_soll_vec = np.full_like(t_vec,UL_T1.get_current_LA()) # storing the target value of the guide vane opening\n", - "UL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] -= 0.1\n", + "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n", "\n", - "UL_T2_LA_soll_vec = np.full_like(t_vec,UL_T2.get_current_LA()) # storing the target value of the guide vane opening\n", - "UL_T2_LA_soll_vec[np.argmin(np.abs(t_vec-105)):] = 0.\n", + "UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()\n", "\n", "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", @@ -200,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -211,9 +257,9 @@ "axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", "axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", "axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", - "axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", - "axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", - "axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", + "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", "axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs0.set_ylabel(r'$LA$ [%]')\n", "axs0.legend()\n", @@ -222,12 +268,11 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "%matplotlib qt5\n", - "# Time loop\n", "\n", "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", "fig1,axs1 = plt.subplots(3,1)\n", @@ -235,11 +280,11 @@ "axs1[0].set_title('Pressure distribution in pipeline')\n", "axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "axs1[0].set_ylim([-2,50])\n", + "axs1[0].set_ylim([-2,80])\n", "axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", "axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "axs1[1].set_ylim([-2,20])\n", + "axs1[1].set_ylim([-40,20])\n", "axs1[2].set_title('Flux distribution in pipeline')\n", "axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", "axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", @@ -248,9 +293,9 @@ "lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", "lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", "lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", - "lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", "lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", "lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", "lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", "lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", "\n", @@ -264,10 +309,11 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ + "# time loop\n", "# needed for turbine convergence\n", "convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n", "\n", @@ -275,7 +321,7 @@ "for it_pipe in range(1,nt+1):\n", "\n", " KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n", - " KW_OL.set_pressure(OL_T1_p_nenn)\n", + " KW_OL.set_pressure(OL_p_pseudo)\n", " Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n", " reservoir.set_influx(Q_in_vec[it_pipe])\n", "\n", @@ -287,7 +333,11 @@ " for it_res in range(Res_nt):\n", " reservoir.timestep_reservoir_evolution() \n", " level_vec[it_pipe] = reservoir.get_current_level() \n", - " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + "\n", + " level_control.update_control_variable(level_vec[it_pipe])\n", + " UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", " \n", " # change the guide vane opening based on the target value and closing time limitation\n", " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n", @@ -350,18 +400,26 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ + "level_plot_min = 0\n", + "level_plot_max = 3\n", + "volume_plot_min = level_plot_min*Res_area_base\n", + "volume_plot_max = level_plot_max*Res_area_base\n", + "\n", "fig2,axs2 = plt.subplots(1,1)\n", "axs2.set_title('Level and Volume reservoir')\n", "axs2.plot(t_vec,level_vec,label='level')\n", + "axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_min',c='r')\n", "axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", "axs2.set_ylabel(r'$h$ [m]')\n", + "axs2.set_ylim(level_plot_min,level_plot_max)\n", "x_twin_00 = axs2.twinx()\n", "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", "x_twin_00.plot(t_vec,volume_vec)\n", + "x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n", "axs2.legend()\n", "\n", "fig2,axs2 = plt.subplots(1,1)\n", @@ -416,67 +474,57 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "fig3,axs3 = plt.subplots(2,2)\n", - "axs3[0,0].set_title('Level and Volume reservoir')\n", - "axs3[0,0].plot(t_vec,level_vec,label='level')\n", - "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[0,0].set_ylabel(r'$h$ [m]')\n", - "x_twin_00 = axs3[0,0].twinx()\n", - "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", - "x_twin_00.plot(t_vec,volume_vec)\n", - "axs3[0,0].legend()\n", "\n", - "axs3[0,1].set_title('LA')\n", - "axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", - "axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", - "axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", - "axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", - "axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", - "axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", - "axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", - "axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", - "axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[0,1].set_ylabel(r'$LA$ [%]')\n", - "axs3[0,1].legend()\n", + "# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n", + "# axs3[0,0].set_title('Level and Volume reservoir')\n", + "# axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "# axs3[0,0].set_ylim(0,3.5)\n", + "# x_twin_00 = axs3[0,0].twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# x_twin_00.set_ylim(0,3.5*Res_area_base)\n", + "# axs3[0,0].legend()\n", "\n", - "axs3[1,0].set_title('Fluxes')\n", - "axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", - "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", - "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", - "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", - "axs3[1,0].legend()\n", + "# axs3[0,1].set_title('LA')\n", + "# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "# axs3[0,1].legend()\n", "\n", - "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", - "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", - "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", - "axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", - "axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", - "axs3[1,1].legend()\n", + "# axs3[1,0].set_title('Fluxes')\n", + "# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs3[1,0].legend()\n", "\n", - "fig3.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.015478260869565217\n" - ] - } - ], - "source": [ - "print(np.sin(Pip_angle))" + "# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs3[1,1].legend()\n", + "\n", + "# fig3.tight_layout()\n", + "# plt.show()\n", + "\n", + "# figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", + "# fig3.savefig(figname)" ] } ], diff --git a/old/KW Hammer.ipynb b/old/KW Hammer.ipynb new file mode 100644 index 0000000..9748476 --- /dev/null +++ b/old/KW Hammer.ipynb @@ -0,0 +1,572 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.20002544638949704\n", + "1.9245898801593564\n", + "0.15248828285441496\n" + ] + } + ], + "source": [ + "print(level_vec[0]-np.min(level_vec))\n", + "print(level_vec[np.argmin(np.abs(t_vec-600))])\n", + "print(np.max(level_vec)-level_vec[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", + "parent = os.path.dirname(current)\n", + "sys.path.append(parent)\n", + "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", + "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", + "from Regler.Regler_class_file import PI_controller_class\n", + "from Turbinen.Turbinen_class_file import Francis_Turbine" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "i = 19\n", + "j = 6\n", + "\n", + "Kp_list = np.arange(0.1,2.1,0.1)\n", + "Area_list = np.arange(20.,160.,20.)" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [], + "source": [ + "# define constants\n", + "\n", + " # for physics\n", + "g = 9.81 # [m/s²] gravitational acceleration \n", + "rho = 1000. # [kg/m³] density of water \n", + "pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n", + "pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n", + "\n", + " # for KW OL \n", + "OL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "OL_T1_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T1_closingTime = 100. # [s] closing time of turbine\n", + "\n", + "OL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "OL_T2_p_nenn = pressure_conversion(6.7,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "OL_T2_closingTime = 100. # [s] closing time of turbine\n", + "\n", + " # for KW UL\n", + "UL_T1_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "UL_T1_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T1_closingTime = 160. # [s] closing time of turbine\n", + "\n", + "UL_T2_Q_nenn = 3.75 # [m³/s] nominal flux of turbine \n", + "UL_T2_p_nenn = pressure_conversion(2.711,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n", + "UL_T2_closingTime = 160. # [s] closing time of turbine\n", + "\n", + " # for PI controller\n", + "Con_targetLevel = 2. # [m]\n", + "Con_K_p = Kp_list[i] # [-] proportional constant of PI controller\n", + "Con_T_i = 200. # [s] timespan in which a steady state error is corrected by the intergal term\n", + "Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", + "\n", + " # for pipeline\n", + "Pip_length = 2300. # [m] length of pipeline\n", + "Pip_dia = 1.8 # [m] diameter of pipeline\n", + "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", + "Pip_head = 35.6 # [m] hydraulic head of pipeline without reservoir\n", + "Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n", + "Pip_n_seg = 50 # [-] number of pipe segments in discretization\n", + "Pip_f_D = 0.015 # [-] Darcy friction factor\n", + "Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n", + " # derivatives of the pipeline constants\n", + "Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n", + "Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n", + "Pip_nn = Pip_n_seg+1 # [1] number of nodes\n", + "Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n", + "Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n", + "\n", + " # for reservoir\n", + "Res_area_base = Area_list[j] # [m²] total base are of the cuboid reservoir \n", + "Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n", + "Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n", + "Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n", + "Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n", + "Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n", + "Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n", + "\n", + " # for general simulation\n", + "# flux_init = (OL_T1_Q_nenn+OL_T2_Q_nenn) # [m³/s] initial flux through whole system for steady state initialization \n", + "OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n", + "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", + "simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", + "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "# create objects\n", + "\n", + "# influx setting turbines\n", + "OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_OL = Kraftwerk_class()\n", + "KW_OL.add_turbine(OL_T1)\n", + "KW_OL.add_turbine(OL_T2)\n", + "\n", + "KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_T1_p_nenn)\n", + "\n", + "flux_init = KW_OL.get_current_Q()\n", + "\n", + "# Upstream reservoir\n", + "reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n", + "reservoir.set_steady_state(flux_init,level_init)\n", + "\n", + "# pipeline\n", + "pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n", + "pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n", + "\n", + "# downstream turbines\n", + "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", + "UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n", + "\n", + "KW_UL = Kraftwerk_class()\n", + "KW_UL.add_turbine(UL_T1)\n", + "KW_UL.add_turbine(UL_T2)\n", + "\n", + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "\n", + "# level controller\n", + "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", + "level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [], + "source": [ + "# initialization for Timeloop\n", + "\n", + "# pipeline\n", + "v_old = pipe.get_current_velocity_distribution() # storing the velocity from the last timestep\n", + "v_min = pipe.get_lowest_velocity_per_node() # storing minimal flux velocity at each node\n", + "v_max = pipe.get_highest_velocity_per_node() # storing maximal flux velocity at each node\n", + "Q_old = pipe.get_current_flux_distribution() # storing the flux from the last timestep\n", + "Q_min = pipe.get_lowest_flux_per_node() # storing minimal flux at each node\n", + "Q_max = pipe.get_highest_flux_per_node() # storing maximal flux at each node\n", + "p_old = pipe.get_current_pressure_distribution() # storing the pressure from the last timestep\n", + "p_min = pipe.get_lowest_pressure_per_node() # storing minimal pressure at each node\n", + "p_max = pipe.get_highest_pressure_per_node() # storing maximal pressure at each node\n", + "p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n", + "\n", + "v_boundary_res = np.zeros_like(t_vec) # storing the boundary velocity at the reservoir\n", + "v_boundary_tur = np.zeros_like(t_vec) # storing the boundary velocity at the turbine\n", + "Q_boundary_res = np.zeros_like(t_vec) # storing the boundary flux at the reservoir\n", + "Q_boundary_tur = np.zeros_like(t_vec) # storing the boundary flux at the turbine\n", + "p_boundary_res = np.zeros_like(t_vec) # storing the boundary pressure at the reservoir\n", + "p_boundary_tur = np.zeros_like(t_vec) # storing the boundary pressure at the turbine\n", + "\n", + "v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n", + "v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n", + "Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n", + "Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n", + "p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n", + "p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n", + "\n", + "# reservoir\n", + "Q_in_vec = np.zeros_like(t_vec) # storing the influx to the reservoir\n", + "Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n", + "# Outflux from reservoir is stored in Q_boundary_res\n", + "level_vec = np.zeros_like(t_vec) # storing the level in the reservoir at the end of each pipeline timestep\n", + "level_vec[0] = level_init # storing the initial level in the reservoir\n", + "volume_vec = np.zeros_like(t_vec) # storing the volume in the reservoir at the end of each pipeline timestep\n", + "volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n", + "\n", + "# OL KW\n", + " # manual input to modulate influx\n", + "OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0.\n", + "OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = 1.\n", + "\n", + "\n", + "OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n", + "\n", + "\n", + "OL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "OL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "# UL KW\n", + "UL_T1_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA()\n", + "\n", + "UL_T2_LA_soll_vec = np.zeros_like(t_vec) # storing the target value of the guide vane opening\n", + "UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA()\n", + "\n", + "UL_T1_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n", + "\n", + "UL_T2_LA_ist_vec = np.zeros_like(t_vec) # storing the actual value of the guide vane opening\n", + "UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [], + "source": [ + "# %matplotlib qt5\n", + "# # displaying the guide vane openings\n", + "# fig0,axs0 = plt.subplots(1,1)\n", + "# axs0.set_title('LA')\n", + "# axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+')\n", + "# axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n", + "# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs0.set_ylabel(r'$LA$ [%]')\n", + "# axs0.legend()\n", + "# plt.pause(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib qt5\n", + "# Time loop\n", + "\n", + "# # create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", + "# fig1,axs1 = plt.subplots(3,1)\n", + "# fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + "# axs1[0].set_title('Pressure distribution in pipeline')\n", + "# axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')c\n", + "# axs1[0].set_ylim([-2,50])\n", + "# axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n", + "# axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs1[1].set_ylim([-2,20])\n", + "# axs1[2].set_title('Flux distribution in pipeline')\n", + "# axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n", + "# axs1[2].set_ylim([-1,10])\n", + "# lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n", + "# lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + "# lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n", + "# lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "\n", + "# # axs1[0].autoscale()\n", + "# # axs1[1].autoscale()\n", + "\n", + "# fig1.tight_layout()\n", + "# fig1.show()\n", + "# plt.pause(1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "# needed for turbine convergence\n", + "convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n", + "\n", + "# loop through time steps of the pipeline\n", + "for it_pipe in range(1,nt+1):\n", + "\n", + " KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n", + " KW_OL.set_pressure(OL_T1_p_nenn)\n", + " Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n", + " reservoir.set_influx(Q_in_vec[it_pipe])\n", + "\n", + "# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n", + " # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n", + " reservoir.set_pressure(p_old[0],display_warning=False)\n", + " reservoir.set_outflux(Q_old[0],display_warning=False)\n", + " # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n", + " for it_res in range(Res_nt):\n", + " reservoir.timestep_reservoir_evolution() \n", + " level_vec[it_pipe] = reservoir.get_current_level() \n", + " volume_vec[it_pipe] = reservoir.get_current_volume() \n", + "\n", + " level_control.update_control_variable(level_vec[it_pipe])\n", + " UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n", + " \n", + " # change the guide vane opening based on the target value and closing time limitation\n", + " KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n", + " OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n", + " UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n", + "\n", + " # set boundary condition for the next timestep of the characteristic method\n", + " convergence_parameters[0] = p_old[-2]\n", + " convergence_parameters[1] = v_old[-2]\n", + " convergence_parameters[9] = p_old[-1]\n", + " KW_UL.set_pressure(p_old[-1])\n", + " KW_UL.converge(convergence_parameters)\n", + " p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n", + " v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n", + " Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n", + "\n", + " # the the boundary condition in the pipe.object and thereby calculate boundary pressure at turbine\n", + " pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n", + " # pipe.v[0] = (0.8*pipe.v[0]+0.2*reservoir.get_current_outflux()/Res_area_out) # unnecessary\n", + " p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n", + " v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n", + " Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n", + "\n", + " # perform the next timestep via the characteristic method\n", + " pipe.timestep_characteristic_method_vectorized()\n", + "\n", + " # prepare for next loop\n", + " p_old = pipe.get_current_pressure_distribution()\n", + " v_old = pipe.get_current_velocity_distribution()\n", + " Q_old = pipe.get_current_flux_distribution()\n", + "\n", + " # # plot some stuff\n", + " # # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n", + " # if it_pipe%50 == 0:\n", + " # lo_0.remove()\n", + " # lo_0min.remove()\n", + " # lo_0max.remove()\n", + " # lo_1.remove()\n", + " # lo_1min.remove()\n", + " # lo_1max.remove()\n", + " # lo_2.remove()\n", + " # lo_2min.remove()\n", + " # lo_2max.remove()\n", + " # # plot new pressure and velocity distribution in the pipeline\n", + " # lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n", + " # lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n", + " # lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n", + " # lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n", + " # lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n", + " # lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + " # lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + " # fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n", + " # fig1.canvas.draw()\n", + " # fig1.tight_layout()\n", + " # fig1.show()\n", + " # plt.pause(0.1) " + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [], + "source": [ + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Level and Volume reservoir')\n", + "# axs2.plot(t_vec,level_vec,label='level')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$h$ [m]')\n", + "# x_twin_00 = axs2.twinx()\n", + "# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "# x_twin_00.plot(t_vec,volume_vec)\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('LA')\n", + "# axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "# axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "# axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "# axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "# axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "# axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "# axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$LA$ [%]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "# axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Fluxes')\n", + "# axs2.plot(t_vec,Q_in_vec,label='Influx')\n", + "# axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n", + "# axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "# axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "# axs2.legend()\n", + "\n", + "# fig2,axs2 = plt.subplots(1,1)\n", + "# axs2.set_title('Min and Max Pressure')\n", + "# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n", + "# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "\n", + "# # fig2,axs2 = plt.subplots(1,1)\n", + "# # axs2.set_title('Min and Max Fluxes')\n", + "# # axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n", + "# # axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n", + "# # axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n", + "# # axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "\n", + "\n", + "# fig2.tight_layout()\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n", + "fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(round(Con_K_p,1))+' Ti = '+str(Con_T_i) )\n", + "axs3[0,0].set_title('Level and Volume reservoir')\n", + "axs3[0,0].plot(t_vec,level_vec,label='level')\n", + "axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,0].set_ylabel(r'$h$ [m]')\n", + "axs3[0,0].set_ylim(0,3.5)\n", + "x_twin_00 = axs3[0,0].twinx()\n", + "x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n", + "x_twin_00.plot(t_vec,volume_vec)\n", + "x_twin_00.set_ylim(0,3.5*Res_area_base)\n", + "axs3[0,0].legend()\n", + "\n", + "axs3[0,1].set_title('LA')\n", + "axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n", + "axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n", + "axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n", + "axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n", + "axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n", + "axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n", + "axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n", + "axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n", + "axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[0,1].set_ylabel(r'$LA$ [%]')\n", + "axs3[0,1].legend()\n", + "\n", + "axs3[1,0].set_title('Fluxes')\n", + "axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n", + "axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n", + "axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n", + "axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n", + "axs3[1,0].legend()\n", + "\n", + "axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n", + "axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n", + "axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n", + "axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n", + "axs3[1,1].legend()\n", + "\n", + "fig3.tight_layout()\n", + "plt.show()\n", + "\n", + "figname = 'Simulation Hammer\\KW_Hammer_Fläche_'+str(Res_area_base)+'_Ti_'+str(Con_T_i)+'_Kp'+str(round(Con_K_p,1))+'.png'\n", + "fig3.savefig(figname)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.20002544638949704\n", + "1.9245898801593564\n", + "0.15248828285441496\n" + ] + } + ], + "source": [ + "print(level_vec[0]-np.min(level_vec))\n", + "print(level_vec[np.argmin(np.abs(t_vec-600))])\n", + "print(np.max(level_vec)-level_vec[0])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untertweng.ipynb b/old/KW Untertweng.ipynb similarity index 98% rename from Untertweng.ipynb rename to old/KW Untertweng.ipynb index b8762bf..ef628dd 100644 --- a/Untertweng.ipynb +++ b/old/KW Untertweng.ipynb @@ -2,29 +2,30 @@ "cells": [ { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import sys\n", "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", - "from functions.pressure_conversion import pressure_conversion\n", "from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", "from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n", - "from Turbinen.Turbinen_class_file import Francis_Turbine\n", + "from functions.pressure_conversion import pressure_conversion\n", + "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n", "from Regler.Regler_class_file import PI_controller_class\n", - "from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class" + "from Turbinen.Turbinen_class_file import Francis_Turbine" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -95,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -117,7 +118,7 @@ "KW_OL.add_turbine(OL_T1)\n", "KW_OL.add_turbine(OL_T2)\n", "\n", - "KW_OL.set_steady_state(flux_init,OL_T1_p_nenn)\n", + "KW_OL.set_steady_state_by_flux(flux_init,OL_T1_p_nenn)\n", "\n", "# downstream turbines\n", "UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n", @@ -127,7 +128,7 @@ "KW_UL.add_turbine(UL_T1)\n", "KW_UL.add_turbine(UL_T2)\n", "\n", - "KW_UL.set_steady_state(flux_init,pipe.get_current_pressure_distribution()[-1])\n", + "KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n", "\n", "# level controller\n", "level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n", @@ -136,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -212,12 +213,11 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "%matplotlib qt5\n", - "# Con_T_ime loop\n", "\n", "# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n", "fig1,axs1 = plt.subplots(2,1)\n", @@ -247,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -331,7 +331,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -397,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [