diff --git a/Ausgleichsbecken/Ausgleichsbecken_class_file.py b/Ausgleichsbecken/Ausgleichsbecken_class_file.py index 703ab68..31af119 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_class_file.py +++ b/Ausgleichsbecken/Ausgleichsbecken_class_file.py @@ -225,8 +225,8 @@ class Ausgleichsbecken_class: delta_level = net_flux*timestep/self.area level_new = (self.level+delta_level) # raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop - # if level_new < 0.01: - # raise Exception('Reservoir ran emtpy') + if level_new < 0.01: + raise Exception('Reservoir ran emtpy') # set flag is necessary because update_level() is used to get a halfstep value in the time evoultion if set_flag == True: self.set_level(level_new,display_warning=False) diff --git a/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb b/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb index 76158d3..06db38d 100644 --- a/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb +++ b/Ausgleichsbecken/Ausgleichsbecken_test_steady_state.ipynb @@ -2,17 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ + "import os\n", + "import sys\n", + "\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from Ausgleichsbecken_class_file import Ausgleichsbecken_class\n", - "import matplotlib.pyplot as plt\n", "\n", "#importing pressure conversion function\n", - "import sys\n", - "import os\n", "current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", @@ -21,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -45,7 +46,7 @@ "Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n", "\n", " # for pipeline\n", - "Pip_length = (535.+478.) # [m] length of pipeline\n", + "Pip_length = 1000. # [m] length of pipeline\n", "Pip_dia = 0.9 # [m] diameter of pipeline\n", "Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n", "Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n", @@ -72,14 +73,14 @@ " # for general simulation\n", "flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n", "level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n", - "simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", + "simTime_target = 1800. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n", "nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n", "t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -98,7 +99,7 @@ "Current outflux = -inf m³/s \n", "Current outflux vel = -inf m/s \n", "Current pipe pressure = -inf mWS \n", - "Simulation timestep = 0.001013 s \n", + "Simulation timestep = 0.001 s \n", "Density of liquid = 1000.0 kg/m³ \n", "----------------------------- \n", "\n", @@ -114,7 +115,7 @@ "Current outflux = 0.773 m³/s \n", "Current outflux vel = 1.215 m/s \n", "Current pipe pressure = 7.854 mWS \n", - "Simulation timestep = 0.001013 s \n", + "Simulation timestep = 0.001 s \n", "Density of liquid = 1000.0 kg/m³ \n", "----------------------------- \n", "\n" @@ -132,75 +133,73 @@ "reservoir.get_info(full=True)\n", "\n", "# initialize vectors\n", + "influx_vec = np.full_like(t_vec,flux_init)\n", + "influx_vec[np.argmin(np.abs(t_vec-1200.)):] = 0.\n", "outflux_vec = np.zeros_like(t_vec)\n", "outflux_vec[0] = reservoir.get_current_outflux()\n", "level_vec = np.zeros_like(t_vec)\n", "level_vec[0] = reservoir.get_current_level()\n", "volume_vec = np.zeros_like(t_vec)\n", "volume_vec[0] = reservoir.get_current_volume()\n", - "pressure_vec = np.zeros_like(t_vec)\n", - "pressure_vec[0] = reservoir.get_current_pressure()" + "pressure_vec = np.full_like(t_vec,reservoir.get_current_pressure())\n", + "pressure_vec[np.argmin(np.abs(t_vec-1200.)):] = 0." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 25, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "The current attributes are: \n", - "----------------------------- \n", - "Current level = 8.0 m\n", - "Current volume = 592.0 m³ \n", - "Current influx = 0.773 m³/s \n", - "Current outflux = 0.773 m³/s \n", - "Current outflux vel = 1.215 m/s \n", - "Current pipe pressure = 7.854 mWS \n", - "----------------------------- \n", - "\n" + "ename": "Exception", + "evalue": "Reservoir ran emtpy", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mException\u001b[0m Traceback (most recent call last)", + "\u001b[1;32my:\\KELAG\\KS\\KS-PW\\04 Digitalisierung\\KSPWDEV Server\\Digital Trainee Projekt\\DT_Slot_3_Project_Repo\\Ausgleichsbecken\\Ausgleichsbecken_test_steady_state.ipynb Cell 4\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 5\u001b[0m reservoir\u001b[39m.\u001b[39mset_outflux(outflux_vec[i\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m],display_warning\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m 6\u001b[0m \u001b[39mfor\u001b[39;00m it_res \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(Res_nt):\n\u001b[1;32m----> 7\u001b[0m reservoir\u001b[39m.\u001b[39;49mtimestep_reservoir_evolution() \n\u001b[0;32m 9\u001b[0m outflux_vec[i] \u001b[39m=\u001b[39m reservoir\u001b[39m.\u001b[39mget_current_outflux()\n\u001b[0;32m 10\u001b[0m level_vec[i] \u001b[39m=\u001b[39m reservoir\u001b[39m.\u001b[39mget_current_level()\n", + "File \u001b[1;32my:\\KELAG\\KS\\KS-PW\\04 Digitalisierung\\KSPWDEV Server\\Digital Trainee Projekt\\DT_Slot_3_Project_Repo\\Ausgleichsbecken\\Ausgleichsbecken_class_file.py:269\u001b[0m, in \u001b[0;36mAusgleichsbecken_class.timestep_reservoir_evolution\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 267\u001b[0m yn \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39moutflux\u001b[39m/\u001b[39mA_a \u001b[39m# outflux velocity\u001b[39;00m\n\u001b[0;32m 268\u001b[0m h \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlevel\n\u001b[1;32m--> 269\u001b[0m h_hs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mupdate_level(dt\u001b[39m/\u001b[39;49m\u001b[39m2\u001b[39;49m)\n\u001b[0;32m 270\u001b[0m p \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpressure\n\u001b[0;32m 271\u001b[0m p_hs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpressure \u001b[39m+\u001b[39m rho\u001b[39m*\u001b[39mg\u001b[39m*\u001b[39m(h_hs\u001b[39m-\u001b[39mh)\n", + "File \u001b[1;32my:\\KELAG\\KS\\KS-PW\\04 Digitalisierung\\KSPWDEV Server\\Digital Trainee Projekt\\DT_Slot_3_Project_Repo\\Ausgleichsbecken\\Ausgleichsbecken_class_file.py:229\u001b[0m, in \u001b[0;36mAusgleichsbecken_class.update_level\u001b[1;34m(self, timestep, set_flag)\u001b[0m\n\u001b[0;32m 227\u001b[0m \u001b[39m# raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop\u001b[39;00m\n\u001b[0;32m 228\u001b[0m \u001b[39mif\u001b[39;00m level_new \u001b[39m<\u001b[39m \u001b[39m0.01\u001b[39m:\n\u001b[1;32m--> 229\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mException\u001b[39;00m(\u001b[39m'\u001b[39m\u001b[39mReservoir ran emtpy\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[0;32m 230\u001b[0m \u001b[39m# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion\u001b[39;00m\n\u001b[0;32m 231\u001b[0m \u001b[39mif\u001b[39;00m set_flag \u001b[39m==\u001b[39m \u001b[39mTrue\u001b[39;00m:\n", + "\u001b[1;31mException\u001b[0m: Reservoir ran emtpy" ] } ], "source": [ "# time loop\n", "for i in range(1,nt+1):\n", - " # if i == 500:\n", - " # reservoir.set_influx(0.)\n", - " reservoir.set_pressure(pressure_vec[i-1],display_warning=False)\n", + " reservoir.set_influx(influx_vec[i])\n", + " reservoir.set_pressure(pressure_vec[i],display_warning=False)\n", " reservoir.set_outflux(outflux_vec[i-1],display_warning=False)\n", " for it_res in range(Res_nt):\n", " reservoir.timestep_reservoir_evolution() \n", " \n", " outflux_vec[i] = reservoir.get_current_outflux()\n", " level_vec[i] = reservoir.get_current_level()\n", - " pressure_vec[i] = reservoir.get_current_pressure()\n", + " # pressure_vec[i] = reservoir.get_current_pressure()\n", "\n", "reservoir.get_info()" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "edc00116bee443f0975cd1fb20cf8179", + "model_id": "17386e67a1764773b422e03d763db868", "version_major": 2, "version_minor": 0 }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAPoCAYAAABOHU+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACns0lEQVR4nOzdeVhV5f7//9dmBhVwQAZFHDI1cbZMTc0yPU5pnkwtBxwqP1lpVidNcyoPjaZ1UsscU9PM4Vg5oanpsXICx3JIFNKNpCmYAwjcvz/6un/tAAXdsIX9fFzXuq72Wve613vdYL6817AtxhgjAAAAuAw3ZxcAAACAwkUABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABFzABx98IIvFosjISGeXYrNp0yZZLBZt2rSp0PYdN26cLBaLzpw5k+9j5lbDl19+ect9FYXjAiheCICAC5g1a5Yk6cCBA/rxxx+dXM2ta9iwob7//ns1bNjQ2aUAQJFEAASKuZ07d2rPnj3q2LGjJGnmzJlOrujW+fv7695775W/v7+zSwGAIokACBRz1wLfm2++qWbNmmnRokW6dOmSbXtul1OPHz8ui8WiOXPm2NYdO3ZMPXv2VFhYmLy9vRUcHKwHH3xQcXFxtjZpaWl68cUXFRISIj8/P7Vs2VK7du1S5cqVFRUVdcN6d+7cqYcfflhlypSRj4+PGjRooC+++MKuTW41//jjj+rcubPKli0rHx8fVatWTcOGDct2jNOnT6tXr14KCAhQcHCwBgwYoJSUFLs2S5YsUZMmTRQQECA/Pz9VrVpVAwYMyNbXlStXNHz4cIWEhMjX11etWrVSbGzsTZ2XJJ08eVJPPfWUwsPD5eXlpbCwMD366KM6ffp0rmOWmpqqdu3aKTg4WNu3b5ckpaen64033lDNmjXl7e2toKAg9e/fX7/99pvdvpUrV1anTp20Zs0aNWzYUL6+vqpZs6Zt1hhA8eTh7AIAFJzLly/r888/1913363IyEgNGDBAgwYN0pIlS9SvX79899ehQwdlZmbq7bffVqVKlXTmzBlt27ZN58+ft7Xp37+/Fi9erH/961964IEHdPDgQT3yyCNKTU29Yf8bN27UP/7xDzVp0kTTp09XQECAFi1apB49eujSpUvXDZBr165V586dVatWLU2aNEmVKlXS8ePHtW7dumxt//nPf6pHjx4aOHCg9u3bp5EjR0r6/y+Vf//99+rRo4d69OihcePGycfHRydOnNC3336bra9XX31VDRs21KeffqqUlBSNGzdO999/v2JjY1W1atV8ndfJkyd199136+rVq3r11VdVt25dnT17VmvXrtW5c+cUHByc7fi//vqrOnTooPT0dH3//feqWrWqsrKy1KVLF23ZskX/+te/1KxZM504cUJjx47V/fffr507d8rX19fWx549e/Tiiy9qxIgRCg4O1qeffqqBAwfqjjvuUMuWLW/4cwNQBBkAxda8efOMJDN9+nRjjDEXLlwwJUuWNC1atLC12bhxo5FkNm7caLdvfHy8kWRmz55tjDHmzJkzRpKZPHlyrsc7cOCAkWReeeUVu/Wff/65kWT69et33ePWrFnTNGjQwFy9etVu/06dOpnQ0FCTmZmZ677VqlUz1apVM5cvX861vrFjxxpJ5u2337Zb/8wzzxgfHx+TlZVljDHm3XffNZLM+fPnc+3rWg0NGza07WeMMcePHzeenp5m0KBB+T6vAQMGGE9PT3Pw4MEbHnfJkiUmNjbWhIWFmRYtWpizZ8/a2lwb76VLl9rtu2PHDiPJTJ061bYuIiLC+Pj4mBMnTtjWXb582ZQpU8Y8/fTTudYBoGjjEjBQjM2cOVO+vr7q2bOnJKlkyZLq3r27tmzZoiNHjuSrrzJlyqhatWp65513NGnSJMXGxiorK8uuzebNmyVJjz32mN36Rx99VB4e17/gcPToUf3888964oknJEkZGRm2pUOHDrJarTp06FCO+x4+fFi//PKLBg4cKB8fnxuey8MPP2z3uW7durpy5YqSk5MlSXfffbftPL744gudPHky174ef/xxWSwW2+eIiAg1a9ZMGzduzPd5rV69Wq1bt1atWrVueA5r165VixYt1LJlS8XExKhMmTK2bV9//bUCAwPVuXNnu+PVr19fISEh2S6d169fX5UqVbJ99vHx0Z133qkTJ07csA4ARRMBECimjh49qu+++04dO3aUMUbnz5/X+fPn9eijj0pSvu/xslgs2rBhg9q1a6e3335bDRs2VFBQkJ5//nlduHBBknT27FlJynap0sPDQ2XLlr1u/9fucXvppZfk6elptzzzzDOSlOvrW67d11axYsU8ncvfa/H29pb05yVzSWrZsqVWrFihjIwM9e3bVxUrVlRkZKQ+//zzbH2FhITkuO7aWOTnvH777bc8n8OKFSt0+fJl/d///Z+t/mtOnz6t8+fPy8vLK9sxk5KSso1jTj8bb29v23gAKH64BxAopmbNmiVjjL788ssc3xk3d+5cvfHGG7YZs7S0NLvtOYWtiIgI20Mlhw8f1hdffKFx48YpPT1d06dPtwWJ06dPq0KFCrb9MjIybIEoN+XKlZMkjRw5Ut26dcuxTY0aNXJcHxQUJOnP++EcpUuXLurSpYvS0tL0ww8/KDo6Wo8//rgqV66spk2b2tolJSVl2zcpKck2Fvk5r6CgoDyfw/vvv69Fixapffv2Wr58udq2bWvbVq5cOZUtW1Zr1qzJcd9SpUrl6RgAii8CIFAMZWZmau7cuapWrZo+/fTTbNu//vprvffee1q9erUaN24sSdq7d6/atWtna7Ny5crrHuPOO+/U6NGjtXTpUu3evVuSbA8MLF682O4dfV9++aUyMjKu21+NGjVUvXp17dmzR//+97/zdqJ/qaVatWqaNWuWhg8fnm1G7FZ4e3urVatWCgwM1Nq1axUbG2sXAD///HMNHz7cdhn4xIkT2rZtm/r27Zvv82rfvr0+++wzHTp0KNewe42Pj4+WL1+u3r176+GHH9bixYvVpUsXSVKnTp20aNEiZWZmqkmTJrdy+gCKKQIgUAytXr1ap06d0ltvvaX7778/2/bIyEj95z//0cyZM9WpUye1adNG0dHRKl26tCIiIrRhwwYtW7bMbp+9e/fq2WefVffu3VW9enV5eXnp22+/1d69ezVixAhJUu3atdWrVy+99957cnd31wMPPKADBw7ovffeU0BAgNzcrn/Xyccff6z27durXbt2ioqKUoUKFfT777/rp59+0u7du7VkyZJc9/3oo4/UuXNn3XvvvXrhhRdUqVIlJSQkaO3atVqwYEG+xm/MmDH69ddf9eCDD6pixYo6f/68pkyZIk9PT7Vq1cqubXJysh555BE9+eSTSklJ0dixY+Xj42N7sjg/5zVhwgStXr1aLVu21Kuvvqo6dero/PnzWrNmjYYPH66aNWvaHdvT01Off/65Bg0apEcffVTz5s1Tr1691LNnTy1YsEAdOnTQ0KFDdc8998jT01O//vqrNm7cqC5duuiRRx7J15gAKGac/RQKAMfr2rWr8fLyMsnJybm26dmzp/Hw8DBJSUnGarWaRx991JQpU8YEBASY3r17m507d9o9BXz69GkTFRVlatasaUqUKGFKlixp6tata95//32TkZFh6/fKlStm+PDhpnz58sbHx8fce++95vvvvzcBAQHmhRdesLXL7enjPXv2mMcee8yUL1/eeHp6mpCQEPPAAw/YnmS+3r7ff/+9ad++vQkICDDe3t6mWrVqdse89hTwb7/9Zrff7NmzjSQTHx9vjDHm66+/Nu3btzcVKlQwXl5epnz58qZDhw5my5Yt2Wr47LPPzPPPP2+CgoKMt7e3adGihdm5c2e28c7LeRljTGJiohkwYIAJCQkxnp6eJiwszDz22GPm9OnTdsddsmSJbZ+srCzz/PPPGzc3NzNjxgxjjDFXr1417777rqlXr57x8fExJUuWNDVr1jRPP/20OXLkiG3fiIgI07Fjx2z1tmrVyrRq1SrbegDFg8UYY5yYPwG4gG3btql58+ZasGCBHn/8cWeXAwAujwAIwKFiYmL0/fffq1GjRvL19dWePXv05ptvKiAgQHv37s3Ta1oAAAWLewABOJS/v7/WrVunyZMn68KFCypXrpzat2+v6Ohowh8A3CaYAQQAAHAxvAgaAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAzfBOIAWVlZOnXqlEqVKiWLxeLscgAAQDFnjNGFCxcUFhYmN7f8z+cRAB3g1KlTCg8Pd3YZAADAxSQmJqpixYr53o8A6AClSpWS9OcPwd/f38nVAACA4i41NVXh4eG2DJJfBEAHuHbZ19/fnwAIAAAKzc3eesZDIAAAAC6GAAgAAOBiCIAAAAAuhnsAAQC4zWVmZurq1avOLgOFyNPTU+7u7gXWf7EKgBkZGRo3bpwWLFigpKQkhYaGKioqSqNHj87TO3L+97//qVWrVoqMjFRcXFzBFwwAwHUYY5SUlKTz5887uxQ4QWBgoEJCQgrkHcPFKgC+9dZbmj59uubOnavatWtr586d6t+/vwICAjR06NDr7puSkqK+ffvqwQcf1OnTpwupYgAAcnct/JUvX15+fn582YCLMMbo0qVLSk5OliSFhoY6/BjFKgB+//336tKlizp27ChJqly5sj7//HPt3Lnzhvs+/fTTevzxx+Xu7q4VK1YUcKUAAFxfZmamLfyVLVvW2eWgkPn6+kqSkpOTVb58eYdfDi5WD4Hcd9992rBhgw4fPixJ2rNnj7Zu3aoOHTpcd7/Zs2frl19+0dixYwujTAAAbujaPX9+fn5OrgTOcu1nXxD3fxarGcBXXnlFKSkpqlmzptzd3ZWZmamJEyeqV69eue5z5MgRjRgxQlu2bJGHR96GIy0tTWlpabbPqampt1w7AAA54bKv6yrIn32xmgFcvHix5s+fr4ULF2r37t2aO3eu3n33Xc2dOzfH9pmZmXr88cc1fvx43XnnnXk+TnR0tAICAmwL3wMMAEDRdvz4cVkslkJ/CNRisTjl1rNiFQBffvlljRgxQj179lSdOnXUp08fvfDCC4qOjs6x/YULF7Rz5049++yz8vDwkIeHhyZMmKA9e/bIw8ND3377bY77jRw5UikpKbYlMTGxIE8LAIAiY/r06SpVqpQyMjJs6/744w95enqqRYsWdm23bNkii8Viu3XrejZt2iSLxcIT0Q5SrC4BX7p0KdvrXtzd3ZWVlZVje39/f+3bt89u3dSpU/Xtt9/qyy+/VJUqVXLcz9vbW97e3o4pGgCAYqR169b6448/tHPnTt17772S/gx6ISEh2rFjhy5dumS7t23Tpk0KCwvL11W4W2WMUWZmZp5v+yquitUMYOfOnTVx4kR98803On78uJYvX65JkybpkUcesbUZOXKk+vbtK0lyc3NTZGSk3VK+fHn5+PgoMjJSJUqUcNapAABQJNWoUUNhYWHatGmTbd2mTZvUpUsXVatWTdu2bbNb37p1a0nS/Pnz1bhxY5UqVUohISF6/PHHba9BOX78uK1d6dKlZbFYFBUVJenPQPf222+ratWq8vX1Vb169fTll1/aHcNisWjt2rVq3LixvL29tWXLljydy8GDB9WhQweVLFlSwcHB6tOnj86cOSNJ+vjjj1WhQoVsk0wPP/yw+vXrZ/v81VdfqVGjRvLx8VHVqlU1fvx4u9lRZylWAfDDDz/Uo48+qmeeeUa1atXSSy+9pKefflqvv/66rY3ValVCQoITqwQAoHi7//77tXHjRtvnjRs36v7771erVq1s69PT0/X999/bgl16erpef/117dmzRytWrFB8fLwt5IWHh2vp0qWSpEOHDslqtWrKlCmSpNGjR2v27NmaNm2aDhw4oBdeeEG9e/fW5s2b7Wr617/+pejoaP3000+qW7fuDc/BarWqVatWql+/vnbu3Kk1a9bo9OnTeuyxxyRJ3bt315kzZ+zO89y5c1q7dq2eeOIJSdLatWvVu3dvPf/88zp48KA+/vhjzZkzRxMnTryZYXUsg1uWkpJiJJmUlBRnlwIAKCYuX75sDh48aC5fvmxbl5WVZS6mXXXKkpWVlefaP/nkE1OiRAlz9epVk5qaajw8PMzp06fNokWLTLNmzYwxxmzevNlIMr/88kuOfWzfvt1IMhcuXDDGGLNx40YjyZw7d87W5o8//jA+Pj5m27ZtdvsOHDjQ9OrVy26/FStWXLfm+Ph4I8nExsYaY4x57bXXTNu2be3aJCYmGknm0KFDxhhjHn74YTNgwADb9o8//tiEhISYjIwMY4wxLVq0MP/+97/t+vjss89MaGio7bMks3z58hxryul34JpbzR6ufQEcAIAi5PLVTN01Zq1Tjn1wQjv5eeUtNrRu3VoXL17Ujh07dO7cOd15550qX768WrVqpT59+ujixYvatGmTKlWqpKpVq0qSYmNjNW7cOMXFxen333+3XVpNSEjQXXfdlXNNBw/qypUreuihh+zWp6enq0GDBnbrGjdunK/z3bVrlzZu3KiSJUtm2/bLL7/ozjvv1BNPPKGnnnpKU6dOlbe3txYsWKCePXvaXtq8a9cu7dixw27GLzMzU1euXLG7F9IZCIAAAMCh7rjjDlWsWFEbN27UuXPn1KpVK0lSSEiIqlSpov/973/auHGjHnjgAUnSxYsX1bZtW7Vt21bz589XUFCQEhIS1K5dO6Wnp+d6nGsh8ZtvvlGFChXstv39Yc383teflZWlzp0766233sq27dpXs3Xu3FlZWVn65ptvdPfdd2vLli2aNGmSXR/jx49Xt27dsvXh4+OTr3ocjQAIAEAR4evproMT2jnt2PnRunVrbdq0SefOndPLL79sW9+qVSutXbtWP/zwg/r37y9J+vnnn3XmzBm9+eabtnfr/v1rXL28vCT9OYN2zV133SVvb28lJCTYQqajNGzYUEuXLlXlypVzfWLY19dX3bp104IFC3T06FHdeeedatSokV0fhw4d0h133OHQ2hyBAAgAQBFhsVjyfBnW2Vq3bq0hQ4bo6tWrduGsVatW+r//+z9duXLF9gBIpUqV5OXlpQ8//FCDBw/W/v377R7glKSIiAhZLBZ9/fXX6tChg3x9fVWqVCm99NJLeuGFF5SVlaX77rtPqamp2rZtm0qWLGn3NG5+DRkyRDNmzFCvXr308ssvq1y5cjp69KgWLVqkGTNm2C7zPvHEE+rcubMOHDig3r172/UxZswYderUSeHh4erevbvc3Ny0d+9e7du3T2+88cZN1+YIxeopYAAAcHto3bq1Ll++rDvuuEPBwcG29a1atdKFCxdUrVo122xfUFCQ5syZoyVLluiuu+7Sm2++qXfffdeuvwoVKmj8+PEaMWKEgoOD9eyzz0qSXn/9dY0ZM0bR0dGqVauW2rVrp6+++irXd/nmVVhYmP73v/8pMzNT7dq1U2RkpIYOHaqAgAC7dw4/8MADKlOmjA4dOqTHH3/cro927drp66+/VkxMjO6++27de++9mjRpkiIiIm6pNkew/L8nUHALUlNTFRAQoJSUFPn7+zu7HABAMXDlyhXFx8erSpUqTr9fDM5xvd+BW80ezAACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAALcxXtbhugryZ08ABADgNuTp6SlJunTpkpMrgbNc+9lf+11wpKLxOnEAAFyMu7u7AgMDlZycLEny8/OTxWJxclUoDMYYXbp0ScnJyQoMDLR964gjEQABALhNhYSESJItBMK1BAYG2n4HHI0ACADAbcpisSg0NFTly5fX1atXnV0OCpGnp2eBzPxdQwAEAOA25+7uXqBhAK6Hh0AAAABcDAEQAADAxRSrAJiRkaHRo0erSpUq8vX1VdWqVTVhwgRlZWXlus/WrVvVvHlzlS1bVr6+vqpZs6bef//9QqwaAACgcBWrewDfeustTZ8+XXPnzlXt2rW1c+dO9e/fXwEBARo6dGiO+5QoUULPPvus6tatqxIlSmjr1q16+umnVaJECT311FOFfAYAAAAFz2KK0SvGO3XqpODgYM2cOdO27p///Kf8/Pz02Wef5bmfbt26qUSJEnneJzU1VQEBAUpJSZG/v3++6wYAAMiPW80exeoS8H333acNGzbo8OHDkqQ9e/Zo69at6tChQ577iI2N1bZt29SqVatc26SlpSk1NdVuAQAAKCqK1SXgV155RSkpKapZs6bc3d2VmZmpiRMnqlevXjfct2LFivrtt9+UkZGhcePGadCgQbm2jY6O1vjx4x1ZOgAAQKEpVjOAixcv1vz587Vw4ULt3r1bc+fO1bvvvqu5c+fecN8tW7Zo586dmj59uiZPnqzPP/8817YjR45USkqKbUlMTHTkaQAAABSoYnUPYHh4uEaMGKEhQ4bY1r3xxhuaP3++fv755zz388Ybb+izzz7ToUOH8tSeewABAEBh4h7Av7h06ZLc3OxPyd3d/bqvgcmJMUZpaWmOLA0AAOC2UazuAezcubMmTpyoSpUqqXbt2oqNjdWkSZM0YMAAW5uRI0fq5MmTmjdvniTpo48+UqVKlVSzZk1Jf74X8N1339Vzzz3nlHMAAAAoaMUqAH744Yd67bXX9Mwzzyg5OVlhYWF6+umnNWbMGFsbq9WqhIQE2+esrCyNHDlS8fHx8vDwULVq1fTmm2/q6aefdsYpAAAAFLhidQ+gs3APIAAAKEzcAwgAAIB8IQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALiYYhUAMzIyNHr0aFWpUkW+vr6qWrWqJkyYoKysrFz3WbZsmR566CEFBQXJ399fTZs21dq1awuxagAAgMJVrALgW2+9penTp+s///mPfvrpJ7399tt655139OGHH+a6z3fffaeHHnpIq1at0q5du9S6dWt17txZsbGxhVg5AABA4bEYY4yzi3CUTp06KTg4WDNnzrSt++c//yk/Pz999tlnee6ndu3a6tGjh8aMGZOn9qmpqQoICFBKSor8/f3zXTcAAEB+3Gr2KFYzgPfdd582bNigw4cPS5L27NmjrVu3qkOHDnnuIysrSxcuXFCZMmVybZOWlqbU1FS7BQAAoKjwcHYBjvTKK68oJSVFNWvWlLu7uzIzMzVx4kT16tUrz3289957unjxoh577LFc20RHR2v8+PGOKBkAAKDQFasZwMWLF2v+/PlauHChdu/erblz5+rdd9/V3Llz87T/559/rnHjxmnx4sUqX758ru1GjhyplJQU25KYmOioUwAAAChwxWoG8OWXX9aIESPUs2dPSVKdOnV04sQJRUdHq1+/ftfdd/HixRo4cKCWLFmiNm3aXLett7e3vL29HVY3AABAYSpWM4CXLl2Sm5v9Kbm7u1/3NTDSnzN/UVFRWrhwoTp27FiQJQIAADhdsZoB7Ny5syZOnKhKlSqpdu3aio2N1aRJkzRgwABbm5EjR+rkyZOaN2+epD/DX9++fTVlyhTde++9SkpKkiT5+voqICDAKecBAABQkIrVa2AuXLig1157TcuXL1dycrLCwsLUq1cvjRkzRl5eXpKkqKgoHT9+XJs2bZIk3X///dq8eXO2vvr166c5c+bk6bi8BgYAABSmW80exSoAOgsBEAAAFCbeAwgAAIB8IQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALiYYhUAMzIyNHr0aFWpUkW+vr6qWrWqJkyYoKysrFz3sVqtevzxx1WjRg25ublp2LBhhVcwAACAE3g4uwBHeuuttzR9+nTNnTtXtWvX1s6dO9W/f38FBARo6NChOe6TlpamoKAgjRo1Su+//34hVwwAAFD4ilUA/P7779WlSxd17NhRklS5cmV9/vnn2rlzZ677VK5cWVOmTJEkzZo1q1DqBAAAcKZidQn4vvvu04YNG3T48GFJ0p49e7R161Z16NDByZUBAADcPorVDOArr7yilJQU1axZU+7u7srMzNTEiRPVq1cvhx4nLS1NaWlpts+pqakO7R8AAKAgFasZwMWLF2v+/PlauHChdu/erblz5+rdd9/V3LlzHXqc6OhoBQQE2Jbw8HCH9g8AAFCQLMYY4+wiHCU8PFwjRozQkCFDbOveeOMNzZ8/Xz///PMN97///vtVv359TZ48+brtcpoBDA8PV0pKivz9/W+6fgAAgLxITU1VQEDATWePYnUJ+NKlS3Jzs5/UdHd3v+5rYG6Gt7e3vL29HdonAABAYSlWAbBz586aOHGiKlWqpNq1ays2NlaTJk3SgAEDbG1GjhypkydPat68ebZ1cXFxkqQ//vhDv/32m+Li4uTl5aW77rqrsE8BAACgwBWrS8AXLlzQa6+9puXLlys5OVlhYWHq1auXxowZIy8vL0lSVFSUjh8/rk2bNtn2s1gs2fqKiIjQ8ePH83TcW52GBQAAyI9bzR7FKgA6CwEQAAAUplvNHsXqKWAAAADcGAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFxMob8HcOXKlfne56GHHpKvr28BVAMAAOB6Cj0Adu3aNV/tLRaLjhw5oqpVqxZMQQAAAC7GKZeAk5KSlJWVlafFz8/PGSUCAAAUW4UeAPv165evy7m9e/fm5coAAAAOxDeBOADfBAIAAAoT3wQCAACAfCn0h0D+7sqVK9q7d6+Sk5OVlZVlt+3hhx92UlUAAADFl1MD4Jo1a9S3b1+dOXMm2zaLxaLMzEwnVAUAAFC8OfUS8LPPPqvu3bvLarVme/qX8AcAAFAwnBoAk5OTNXz4cAUHBzuzDAAAAJfi1AD46KOPatOmTc4sAQAAwOU49TUwly5dUvfu3RUUFKQ6derI09PTbvvzzz/vpMryh9fAAACAwnSr2cOpD4EsXLhQa9eula+vrzZt2iSLxWLbZrFYikwABAAAKEqcegl49OjRmjBhglJSUnT8+HHFx8fblmPHjuW7v4yMDI0ePVpVqlSRr6+vqlatqgkTJmR7vczfbd68WY0aNZKPj4+qVq2q6dOn3+wpAQAA3PacOgOYnp6uHj16yM3NMTn0rbfe0vTp0zV37lzVrl1bO3fuVP/+/RUQEKChQ4fmuE98fLw6dOigJ598UvPnz9f//vc/PfPMMwoKCtI///lPh9QFAABwO3HqPYAvvPCCgoKC9Oqrrzqkv06dOik4OFgzZ860rfvnP/8pPz8/ffbZZznu88orr2jlypX66aefbOsGDx6sPXv26Pvvv8/TcbkHEAAAFKYifQ9gZmam3n77ba1du1Z169bN9hDIpEmT8tXffffdp+nTp+vw4cO68847tWfPHm3dulWTJ0/OdZ/vv/9ebdu2tVvXrl07zZw5U1evXs1WkzMkpVzRH2kZzi4DAADkQ7C/t0r5OD9H5MSpAXDfvn1q0KCBJGn//v122/76QEhevfLKK0pJSVHNmjXl7u6uzMxMTZw4Ub169cp1n6SkpGzvIQwODlZGRobOnDmj0NDQbPukpaUpLS3N9jk1NTXftebHhK8PaNW+pAI9BgAAcKwPejXQw/XCnF1GjpwaADdu3OjQ/hYvXqz58+dr4cKFql27tuLi4jRs2DCFhYWpX79+ue7397B57ap4biE0Ojpa48ePd1zhN+Dn5aEA39vzXxAAACBnXu75n8wqLIV+D+DevXsVGRmZ5wc/Dhw4oBo1asjD48ZZNTw8XCNGjNCQIUNs69544w3Nnz9fP//8c477tGzZUg0aNNCUKVNs65YvX67HHntMly5dyvEScE4zgOHh4dwDCAAACsWt3gNY6K+BadCggc6ePZvn9k2bNlVCQkKe2l66dClbsHR3d7/ua2CaNm2qmJgYu3Xr1q1T48aNc73/z9vbW/7+/nYLAABAUVHol4CNMXrttdfk5+eXp/bp6el57rtz586aOHGiKlWqpNq1ays2NlaTJk3SgAEDbG1GjhypkydPat68eZL+fOL3P//5j4YPH64nn3xS33//vWbOnKnPP/88fycGAABQRBR6AGzZsqUOHTqU5/ZNmzaVr69vntp++OGHeu211/TMM88oOTlZYWFhevrppzVmzBhbG6vVajejWKVKFa1atUovvPCCPvroI4WFhemDDz7gHYAAAKDYcup7AIsL3gMIAAAKU5G7BxAAAADORQAEAABwMQRAAAAAF0MABAAAcDEEQAAAABfj1K+C27Fjh0aMGKHffvtNd9xxh+rXr29bKlWq5MzSAAAAii2nzgD26dNH7u7uGjx4sKpWrarNmzerf//+qly5ssqWLevM0gAAAIotp84AJiYm6ptvvlG1atXs1p84cUJxcXHOKQoAAKCYc2oAbN68uRITE7MFwIiICEVERDipKgAAgOKt0ANgly5dVK9ePdWrV0+DBw/WhAkTVKdOHS75AgAAFJJCD4DVq1fXtm3bNG3aNJ09e1aSVKNGDXXp0kVNmzZVgwYNVKdOHXl5eRV2aQAAAC7Bqd8F/OuvvyouLs5uiY+Pl7u7u2rWrKm9e/c6q7R84buAAQBAYbrV7OHUewArVqyoihUrqlOnTrZ1f/zxh2JjY4tM+AMAAChqnDoDWFwwAwgAAArTrWYPvgkEAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFFKsAWLlyZVkslmzLkCFDct3no48+Uq1ateTr66saNWpo3rx5hVgxAABA4XPqewAdbceOHcrMzLR93r9/vx566CF17949x/bTpk3TyJEjNWPGDN19993avn27nnzySZUuXVqdO3curLIBAAAKVbF+D+CwYcP09ddf68iRI7JYLNm2N2vWTM2bN9c777xjt8/OnTu1devWPB+H9wACAIDCVKS/CaQgpaena/78+Ro+fHiO4U+S0tLS5OPjY7fO19dX27dv19WrV+Xp6ZnrfmlpabbPqampjiscAACggBWrewD/asWKFTp//ryioqJybdOuXTt9+umn2rVrl4wx2rlzp2bNmqWrV6/qzJkzue4XHR2tgIAA2xIeHl4AZwAAAFAwiu0l4Hbt2snLy0tfffVVrm0uX76sIUOG6LPPPpMxRsHBwerdu7fefvttnT59WuXLl89xv5xmAMPDw7kEDAAACgVfBZeDEydOaP369Ro0aNB12/n6+mrWrFm6dOmSjh8/roSEBFWuXFmlSpVSuXLlct3P29tb/v7+dgsAAEBRUSzvAZw9e7bKly+vjh075qm9p6enKlasKElatGiROnXqJDe3YpmNAQAAil8AzMrK0uzZs9WvXz95eNif3siRI3Xy5Enbu/4OHz6s7du3q0mTJjp37pwmTZqk/fv3a+7cuc4oHQAAoFAUuwC4fv16JSQkaMCAAdm2Wa1WJSQk2D5nZmbqvffe06FDh+Tp6anWrVtr27Ztqly5ciFWDAAAULiK7UMghYn3AAIAgMLEQyAAAADIFwIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLKVYBsHLlyrJYLNmWIUOG5LrPggULVK9ePfn5+Sk0NFT9+/fX2bNnC7FqAACAwlWsAuCOHTtktVptS0xMjCSpe/fuObbfunWr+vbtq4EDB+rAgQNasmSJduzYoUGDBhVm2QAAAIXKw9kFOFJQUJDd5zfffFPVqlVTq1atcmz/ww8/qHLlynr++eclSVWqVNHTTz+tt99+u8BrBQAAcJZiNQP4V+np6Zo/f74GDBggi8WSY5tmzZrp119/1apVq2SM0enTp/Xll1+qY8eO1+07LS1NqampdgsAAEBRUWwD4IoVK3T+/HlFRUXl2qZZs2ZasGCBevToIS8vL4WEhCgwMFAffvjhdfuOjo5WQECAbQkPD3dw9QAAAAXHYowxzi6iILRr105eXl766quvcm1z8OBBtWnTRi+88ILatWsnq9Wql19+WXfffbdmzpyZ635paWlKS0uzfU5NTVV4eLhSUlLk7+/v0PMAAAD4u9TUVAUEBNx09iiWAfDEiROqWrWqli1bpi5duuTark+fPrpy5YqWLFliW7d161a1aNFCp06dUmhoaJ6Od6s/BAAAgPy41exRLC8Bz549W+XLl7/hvXyXLl2Sm5v9ELi7u0uSimEuBgAAkFQMA2BWVpZmz56tfv36ycPD/iHnkSNHqm/fvrbPnTt31rJlyzRt2jQdO3ZM//vf//T888/rnnvuUVhYWGGXDgAAUCiK1WtgJGn9+vVKSEjQgAEDsm2zWq1KSEiwfY6KitKFCxf0n//8Ry+++KICAwP1wAMP6K233irMkgEAAApVsbwHsLBxDyAAAChM3AMIAACAfCEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4mGIVACtXriyLxZJtGTJkSI7to6Kicmxfu3btQq4cAACg8BSrALhjxw5ZrVbbEhMTI0nq3r17ju2nTJli1z4xMVFlypTJtT0AAEBx4OHsAhwpKCjI7vObb76patWqqVWrVjm2DwgIUEBAgO3zihUrdO7cOfXv379A6wQAAHCmYjUD+Ffp6emaP3++BgwYIIvFkqd9Zs6cqTZt2igiIqKAqwMAAHCeYjUD+FcrVqzQ+fPnFRUVlaf2VqtVq1ev1sKFC2/YNi0tTWlpabbPqampN1smAABAoSu2M4AzZ85U+/btFRYWlqf2c+bMUWBgoLp27XrDttHR0bbLxwEBAQoPD7/FagEAAApPsQyAJ06c0Pr16zVo0KA8tTfGaNasWerTp4+8vLxu2H7kyJFKSUmxLYmJibdaMgAAQKEplpeAZ8+erfLly6tjx455ar9582YdPXpUAwcOzFN7b29veXt730qJAAAATlPsZgCzsrI0e/Zs9evXTx4e9vl25MiR6tu3b7Z9Zs6cqSZNmigyMrKwygQAAHCaYhcA169fr4SEBA0YMCDbNqvVqoSEBLt1KSkpWrp0aZ5n/wAAAIo6izHGOLuIoi41NVUBAQFKSUmRv7+/s8sBAADF3K1mj2I3AwgAAIDrIwACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLKVYBsHLlyrJYLNmWIUOG5LpPWlqaRo0apYiICHl7e6tatWqaNWtWIVYNAABQuDycXYAj7dixQ5mZmbbP+/fv10MPPaTu3bvnus9jjz2m06dPa+bMmbrjjjuUnJysjIyMwigXAADAKYpVAAwKCrL7/Oabb6patWpq1apVju3XrFmjzZs369ixYypTpoykP2cRAQAAirNidQn4r9LT0zV//nwNGDBAFoslxzYrV65U48aN9fbbb6tChQq688479dJLL+ny5cvX7TstLU2pqal2CwAAQFFRrGYA/2rFihU6f/68oqKicm1z7Ngxbd26VT4+Plq+fLnOnDmjZ555Rr///vt17wOMjo7W+PHjC6BqAACAgmcxxhhnF1EQ2rVrJy8vL3311Ve5tmnbtq22bNmipKQkBQQESJKWLVumRx99VBcvXpSvr2+O+6WlpSktLc32OTU1VeHh4UpJSZG/v79jTwQAAOBvUlNTFRAQcNPZo1jOAJ44cULr16/XsmXLrtsuNDRUFSpUsIU/SapVq5aMMfr1119VvXr1HPfz9vaWt7e3Q2sGAAAoLMXyHsDZs2erfPny6tix43XbNW/eXKdOndIff/xhW3f48GG5ubmpYsWKBV0mAACAUxS7AJiVlaXZs2erX79+8vCwn+AcOXKk+vbta/v8+OOPq2zZsurfv78OHjyo7777Ti+//LIGDBiQ6+VfAACAoq7YBcD169crISFBAwYMyLbNarUqISHB9rlkyZKKiYnR+fPn1bhxYz3xxBPq3LmzPvjgg8IsGQAAoFAV24dACtOt3ogJAACQH7eaPYrdDCAAAACujwAIAADgYgiAAAAALoYACAAA4GKK5YugC9u152j4TmAAAFAYrmWOm32WlwDoABcuXJAkhYeHO7kSAADgSi5cuGD3jWZ5xWtgHCArK0unTp1SqVKlZLFYHN7/te8aTkxM5DUzt4ixdAzG0TEYR8dhLB2DcXSMwhhHY4wuXLigsLAwubnl/44+ZgAdoLC+Os7f358/kA7CWDoG4+gYjKPjMJaOwTg6RkGP483M/F3DQyAAAAAuhgAIAADgYgiARYC3t7fGjh0rb29vZ5dS5DGWjsE4Ogbj6DiMpWMwjo5RFMaRh0AAAABcDDOAAAAALoYACAAA4GIIgAAAAC6GAFgETJ06VVWqVJGPj48aNWqkLVu2OLuk28p3332nzp07KywsTBaLRStWrLDbbozRuHHjFBYWJl9fX91///06cOCAXZu0tDQ999xzKleunEqUKKGHH35Yv/76ayGehfNFR0fr7rvvVqlSpVS+fHl17dpVhw4dsmvDWN7YtGnTVLduXdv7v5o2barVq1fbtjOGNyc6OloWi0XDhg2zrWMs82bcuHGyWCx2S0hIiG0745h3J0+eVO/evVW2bFn5+fmpfv362rVrl217kRpLg9vaokWLjKenp5kxY4Y5ePCgGTp0qClRooQ5ceKEs0u7baxatcqMGjXKLF261Egyy5cvt9v+5ptvmlKlSpmlS5eaffv2mR49epjQ0FCTmppqazN48GBToUIFExMTY3bv3m1at25t6tWrZzIyMgr5bJynXbt2Zvbs2Wb//v0mLi7OdOzY0VSqVMn88ccftjaM5Y2tXLnSfPPNN+bQoUPm0KFD5tVXXzWenp5m//79xhjG8GZs377dVK5c2dStW9cMHTrUtp6xzJuxY8ea2rVrG6vValuSk5Nt2xnHvPn9999NRESEiYqKMj/++KOJj48369evN0ePHrW1KUpjSQC8zd1zzz1m8ODBdutq1qxpRowY4aSKbm9/D4BZWVkmJCTEvPnmm7Z1V65cMQEBAWb69OnGGGPOnz9vPD09zaJFi2xtTp48adzc3MyaNWsKrfbbTXJyspFkNm/ebIxhLG9F6dKlzaeffsoY3oQLFy6Y6tWrm5iYGNOqVStbAGQs827s2LGmXr16OW5jHPPulVdeMffdd1+u24vaWHIJ+DaWnp6uXbt2qW3btnbr27Ztq23btjmpqqIlPj5eSUlJdmPo7e2tVq1a2cZw165dunr1ql2bsLAwRUZGuvQ4p6SkSJLKlCkjibG8GZmZmVq0aJEuXryopk2bMoY3YciQIerYsaPatGljt56xzJ8jR44oLCxMVapUUc+ePXXs2DFJjGN+rFy5Uo0bN1b37t1Vvnx5NWjQQDNmzLBtL2pjSQC8jZ05c0aZmZkKDg62Wx8cHKykpCQnVVW0XBun641hUlKSvLy8VLp06VzbuBpjjIYPH6777rtPkZGRkhjL/Ni3b59Kliwpb29vDR48WMuXL9ddd93FGObTokWLtGvXLkVHR2fbxljmXZMmTTRv3jytXbtWM2bMUFJSkpo1a6azZ88yjvlw7NgxTZs2TdWrV9fatWs1ePBgPf/885o3b56kovc76VGoR8NNsVgsdp+NMdnW4fpuZgxdeZyfffZZ7d27V1u3bs22jbG8sRo1aiguLk7nz5/X0qVL1a9fP23evNm2nTG8scTERA0dOlTr1q2Tj49Pru0Yyxtr37697b/r1Kmjpk2bqlq1apo7d67uvfdeSYxjXmRlZalx48b697//LUlq0KCBDhw4oGnTpqlv3762dkVlLJkBvI2VK1dO7u7u2f5VkJycnO1fGMjZtSfdrjeGISEhSk9P17lz53Jt40qee+45rVy5Uhs3blTFihVt6xnLvPPy8tIdd9yhxo0bKzo6WvXq1dOUKVMYw3zYtWuXkpOT1ahRI3l4eMjDw0ObN2/WBx98IA8PD9tYMJb5V6JECdWpU0dHjhzhdzIfQkNDddddd9mtq1WrlhISEiQVvf9HEgBvY15eXmrUqJFiYmLs1sfExKhZs2ZOqqpoqVKlikJCQuzGMD09XZs3b7aNYaNGjeTp6WnXxmq1av/+/S41zsYYPfvss1q2bJm+/fZbValSxW47Y3nzjDFKS0tjDPPhwQcf1L59+xQXF2dbGjdurCeeeEJxcXGqWrUqY3mT0tLS9NNPPyk0NJTfyXxo3rx5tldjHT58WBEREZKK4P8jC/WRE+TbtdfAzJw50xw8eNAMGzbMlChRwhw/ftzZpd02Lly4YGJjY01sbKyRZCZNmmRiY2Ntr8p58803TUBAgFm2bJnZt2+f6dWrV46P5VesWNGsX7/e7N692zzwwAMu94qD//u//zMBAQFm06ZNdq+LuHTpkq0NY3ljI0eONN99952Jj483e/fuNa+++qpxc3Mz69atM8Ywhrfir08BG8NY5tWLL75oNm3aZI4dO2Z++OEH06lTJ1OqVCnb3yOMY95s377deHh4mIkTJ5ojR46YBQsWGD8/PzN//nxbm6I0lgTAIuCjjz4yERERxsvLyzRs2ND2Wg78aePGjUZStqVfv37GmD8fzR87dqwJCQkx3t7epmXLlmbfvn12fVy+fNk8++yzpkyZMsbX19d06tTJJCQkOOFsnCenMZRkZs+ebWvDWN7YgAEDbH9eg4KCzIMPPmgLf8Ywhrfi7wGQscyba++i8/T0NGFhYaZbt27mwIEDtu2MY9599dVXJjIy0nh7e5uaNWuaTz75xG57URpLizHGFO6cIwAAAJyJewABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAwBEAAK2f333y+LxSKLxaK4uLg87RMVFWXbZ8WKFQVaH4DijwAIAA42bNgwde3a9bptnnzySVmtVkVGRuapzylTpshqtTqgOgAgAAKAw+3YsUP33HPPddv4+fkpJCREHh4eeeozICBAISEhjigPAAiAAOAoV69elZeXl7Zt26ZRo0bJYrGoSZMmed7/yy+/VJ06deTr66uyZcuqTZs2unjxYgFWDMBV5e2fngCAG3J3d9fWrVvVpEkTxcXFKTg4WD4+Pnna12q1qlevXnr77bf1yCOP6MKFC9qyZYuMMQVcNQBXRAAEAAdxc3PTqVOnVLZsWdWrVy9f+1qtVmVkZKhbt26KiIiQJNWpU6cgygQALgEDgCPFxsbmO/xJUr169fTggw+qTp066t69u2bMmKFz584VQIUAQAAEAIeKi4u7qQDo7u6umJgYrV69WnfddZc+/PBD1ahRQ/Hx8QVQJQBXRwAEAAfat2+f6tate1P7WiwWNW/eXOPHj1dsbKy8vLy0fPlyB1cIANwDCAAOlZWVpb179+rUqVMqUaKEAgIC8rTfjz/+qA0bNqht27YqX768fvzxR/3222+qVatWAVcMwBUxAwgADvTGG29o8eLFqlChgiZMmJDn/fz9/fXdd9+pQ4cOuvPOOzV69Gi99957at++fQFWC8BVMQMIAA7Uu3dv9e7dO9/71apVS2vWrCmAigAgO2YAAcAJpk6dqpIlS2rfvn15aj948GCVLFmygKsC4CoshreMAkChOnnypC5fvixJqlSpkry8vG64T3JyslJTUyVJoaGhKlGiRIHWCKB4IwACAAC4GC4BAwAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIvxcHYBxUFWVpZOnTqlUqVKyWKxOLscAABQzBljdOHCBYWFhcnNLf/zeQRABzh16pTCw8OdXQYAAHAxiYmJqlixYr73IwA6QKlSpST9+UPw9/d3cjUAAKC4S01NVXh4uC2D5BcB0AGuXfb19/cnAAIAgEJzs7ee8RAIAACAiyEAAgAAuBgCIAAAgIvhHkAAAGAnMzNTV69edXYZLs3T01Pu7u4F1j8BEAAASPrz3XJJSUk6f/68s0uBpMDAQIWEhBTIO4YJgAAAQJJs4a98+fLy8/Pjyw2cxBijS5cuKTk5WZIUGhrq8GMQAAEAgDIzM23hr2zZss4ux+X5+vpKkpKTk1W+fHmHXw7mIRAAAGC758/Pz8/JleCaaz+LgrgfkwAIAABsuOx7+yjIn0WRC4BTp05VlSpV5OPjo0aNGmnLli3Xbb9gwQLVq1dPfn5+Cg0NVf/+/XX27Fnb9gMHDuif//ynKleuLIvFosmTJxfwGQAAADhXkQqAixcv1rBhwzRq1CjFxsaqRYsWat++vRISEnJsv3XrVvXt21cDBw7UgQMHtGTJEu3YsUODBg2ytbl06ZKqVq2qN998UyEhIYV1KgAAoAgZN26cgoODZbFYtGLFCkVFRalr167OLuumFakAOGnSJA0cOFCDBg1SrVq1NHnyZIWHh2vatGk5tv/hhx9UuXJlPf/886pSpYruu+8+Pf3009q5c6etzd1336133nlHPXv2lLe3d2GdCgAAcKDExEQNHDhQYWFh8vLyUkREhIYOHWp31e9Gjh8/LovFori4OLv1P/30k8aPH6+PP/5YVqtV7du3d3D1ha/IBMD09HTt2rVLbdu2tVvftm1bbdu2Lcd9mjVrpl9//VWrVq2SMUanT5/Wl19+qY4dO95SLWlpaUpNTbVbAACAcxw7dkyNGzfW4cOH9fnnn+vo0aOaPn26NmzYoKZNm+r333+/pf5/+eUXSVKXLl0UEhJSLCaMikwAPHPmjDIzMxUcHGy3Pjg4WElJSTnu06xZMy1YsEA9evSQl5eXQkJCFBgYqA8//PCWaomOjlZAQIBtCQ8Pv6X+AADAzRsyZIi8vLy0bt06tWrVSpUqVVL79u21fv16nTx5UqNGjZIk2+XbvwoMDNScOXMkSVWqVJEkNWjQQBaLRffff7/GjRunzp07S5Lc3NxyfTCjcuXK2Z4jqF+/vsaNGydJ2rRpk7y8vOyeXXjvvfdUrlw5Wa3WWxyB/CsyAfCavw+8MSbXH8bBgwf1/PPPa8yYMdq1a5fWrFmj+Ph4DR48+JZqGDlypFJSUmxLYmLiLfUHAMDtyBijS+kZhb4YY/Jc4++//661a9fqmWeesb0775qQkBA98cQTWrx4cZ763L59uyRp/fr1slqtWrZsmV566SXNnj1bkmS1Wm86rN1///0aNmyY+vTpo5SUFO3Zs0ejRo3SjBkzCuRFzzdSZF4EXa5cObm7u2eb7UtOTs42K3hNdHS0mjdvrpdfflmSVLduXZUoUUItWrTQG2+8cdMD7u3tXSymfwEAuJ7LVzN115i1hX7cgxPayc8rbxHlyJEjMsaoVq1aOW6vVauWzp07p99+++2GfQUFBUmSypYta/dgaGBgoCTd8sOib7zxhtavX6+nnnpKBw4cUJ8+ffTII4/cUp83q8jMAHp5ealRo0aKiYmxWx8TE6NmzZrluM+lS5fk5mZ/itfepJ2ff10AAICi6drf97fD+w29vLw0f/58LV26VJcvX3bqq+eKzAygJA0fPlx9+vRR48aN1bRpU33yySdKSEiwXdIdOXKkTp48qXnz5kmSOnfurCeffFLTpk1Tu3btZLVaNWzYMN1zzz0KCwuT9OfDJQcPHrT998mTJxUXF6eSJUvqjjvucM6JAgBwG/D1dNfBCe2ccty8uuOOO2SxWHTw4MEcX8vy888/q3Tp0ipXrpwsFku2CSBHfcuGm5tbnvq+9uDq77//rt9//10lSpRwyPHzq0gFwB49eujs2bOaMGGCrFarIiMjtWrVKkVEREj689r8X98JGBUVpQsXLug///mPXnzxRQUGBuqBBx7QW2+9ZWtz6tQpNWjQwPb53Xff1bvvvqtWrVpp06ZNhXZuAADcbiwWS54vxTpL2bJl9dBDD2nq1Kl64YUX7O4DTEpK0oIFC9S3b19ZLBYFBQXZ3cN35MgRXbp0yfbZy8tL0p/fi5xff+87NTVV8fHxdm1++eUXvfDCC5oxY4a++OIL9e3bVxs2bMh2tbIw3N4/1Rw888wzeuaZZ3Lcdu0pnr967rnn9Nxzz+XaX+XKlbkcDABAEfaf//xHzZo1U7t27fTGG2+oSpUqOnDggF5++WVVqFBBEydOlCQ98MAD+s9//qN7771XWVlZeuWVV+Tp6Wnrp3z58vL19dWaNWtUsWJF+fj4KCAgIE81PPDAA5ozZ446d+6s0qVL67XXXrPddib9GSr79Omjtm3bqn///mrfvr3q1Kmj9957z/asQmEqMvcAAgAA5KR69erauXOnqlWrph49eqhatWp66qmn1Lp1a33//fcqU6aMpD9fuxIeHq6WLVvq8ccf10svvSQ/Pz9bPx4eHvrggw/08ccfKywsTF26dMlzDSNHjlTLli3VqVMndejQQV27dlW1atVs2ydOnKjjx4/rk08+kfTnAyWffvqpRo8ene3F04XBYpj+umWpqakKCAhQSkqK/P39nV0OAAD5duXKFcXHx6tKlSry8fFxdjnQ9X8mt5o9mAEEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAGCTlZXl7BLw/xTkz6LIvQgaAAA4npeXl9zc3HTq1CkFBQXJy8vrtvj+XFdkjFF6erp+++03ubm52b6hxJEIgAAAQG5ubqpSpYqsVqtOnTrl7HIgyc/PT5UqVSqQr4ojAAIAAEl/zgJWqlRJGRkZN/V9uHAcd3d3eXh4FNgsLAEQAADYWCwWeXp62n1HLoofHgIBAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMUUuAE6dOlVVqlSRj4+PGjVqpC1btly3/YIFC1SvXj35+fkpNDRU/fv319mzZ+3aLF26VHfddZe8vb111113afny5QV5CgAAAE5VpALg4sWLNWzYMI0aNUqxsbFq0aKF2rdvr4SEhBzbb926VX379tXAgQN14MABLVmyRDt27NCgQYNsbb7//nv16NFDffr00Z49e9SnTx899thj+vHHHwvrtAAAAAqVxRhjnF1EXjVp0kQNGzbUtGnTbOtq1aqlrl27Kjo6Olv7d999V9OmTdMvv/xiW/fhhx/q7bffVmJioiSpR48eSk1N1erVq21t/vGPf6h06dL6/PPP81RXamqqAgIClJKSIn9//5s9PQAAgDy51exRZGYA09PTtWvXLrVt29Zufdu2bbVt27Yc92nWrJl+/fVXrVq1SsYYnT59Wl9++aU6duxoa/P9999n67Ndu3a59gkAAFDUFZkAeObMGWVmZio4ONhufXBwsJKSknLcp1mzZlqwYIF69OghLy8vhYSEKDAwUB9++KGtTVJSUr76lKS0tDSlpqbaLQAAAEVFkQmA11gsFrvPxphs6645ePCgnn/+eY0ZM0a7du3SmjVrFB8fr8GDB990n5IUHR2tgIAA2xIeHn6TZwMAAFD4ikwALFeunNzd3bPNzCUnJ2ebwbsmOjpazZs318svv6y6deuqXbt2mjp1qmbNmiWr1SpJCgkJyVefkjRy5EilpKTYlmv3EwIAABQFRSYAenl5qVGjRoqJibFbHxMTo2bNmuW4z6VLl+TmZn+K7u7ukv6c5ZOkpk2bZutz3bp1ufYpSd7e3vL397dbAAAAigoPZxeQH8OHD1efPn3UuHFjNW3aVJ988okSEhJsl3RHjhypkydPat68eZKkzp0768knn9S0adPUrl07Wa1WDRs2TPfcc4/CwsIkSUOHDlXLli311ltvqUuXLvrvf/+r9evXa+vWrU47TwAAgIJUpAJgjx49dPbsWU2YMEFWq1WRkZFatWqVIiIiJElWq9XunYBRUVG6cOGC/vOf/+jFF19UYGCgHnjgAb311lu2Ns2aNdOiRYs0evRovfbaa6pWrZoWL16sJk2aFPr5AQAAFIYi9R7A2xXvAQQAAIXJZd4DCAAAAMcgAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIspcgFw6tSpqlKlinx8fNSoUSNt2bIl17ZRUVGyWCzZltq1a9vaXL16VRMmTFC1atXk4+OjevXqac2aNYVxKgAAAE5RpALg4sWLNWzYMI0aNUqxsbFq0aKF2rdvr4SEhBzbT5kyRVar1bYkJiaqTJky6t69u63N6NGj9fHHH+vDDz/UwYMHNXjwYD3yyCOKjY0trNMCAAAoVBZjjHF2EXnVpEkTNWzYUNOmTbOtq1Wrlrp27aro6Ogb7r9ixQp169ZN8fHxioiIkCSFhYVp1KhRGjJkiK1d165dVbJkSc2fPz9PdaWmpiogIEApKSny9/fP51kBAADkz61mjyIzA5ienq5du3apbdu2duvbtm2rbdu25amPmTNnqk2bNrbwJ0lpaWny8fGxa+fr66utW7feetEAAAC3IQ9nF5BXZ86cUWZmpoKDg+3WBwcHKykp6Yb7W61WrV69WgsXLrRb365dO02aNEktW7ZUtWrVtGHDBv33v/9VZmZmrn2lpaUpLS3N9jk1NTWfZwMAAOA8RWYG8BqLxWL32RiTbV1O5syZo8DAQHXt2tVu/ZQpU1S9enXVrFlTXl5eevbZZ9W/f3+5u7vn2ld0dLQCAgJsS3h4+E2dCwAAgDMUmQBYrlw5ubu7Z5vtS05OzjYr+HfGGM2aNUt9+vSRl5eX3bagoCCtWLFCFy9e1IkTJ/Tzzz+rZMmSqlKlSq79jRw5UikpKbYlMTHx5k8MAACgkBWZAOjl5aVGjRopJibGbn1MTIyaNWt23X03b96so0ePauDAgbm28fHxUYUKFZSRkaGlS5eqS5cuubb19vaWv7+/3QIAAFBUFJl7ACVp+PDh6tOnjxo3bqymTZvqk08+UUJCggYPHizpz5m5kydPat68eXb7zZw5U02aNFFkZGS2Pn/88UedPHlS9evX18mTJzVu3DhlZWXpX//6V6GcEwAAQGErUgGwR48eOnv2rCZMmCCr1arIyEitWrXK9lSv1WrN9k7AlJQULV26VFOmTMmxzytXrmj06NE6duyYSpYsqQ4dOuizzz5TYGBgQZ8OAACAUxSp9wDerngPIAAAKEwu8x5AAAAAOAYBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFOOS7gFeuXJnvfR566CH5+vo64vAAAADIB4cEwK5du+arvcVi0ZEjR1S1alVHHB4AAAD54LBLwElJScrKysrT4ufn56jDAgAAIJ8cEgD79euXr8u5vXv3lr+/vyMODQAAgHyyGGOMs4so6lJTUxUQEKCUlBSCLQAAKHC3mj0c/hTw5cuXdenSJdvnEydOaPLkyVq3bp2jDwUAAICb4PAA2KVLF82bN0+SdP78eTVp0kTvvfeeunTpomnTpjn6cAAAAMgnhwfA3bt3q0WLFpKkL7/8UsHBwTpx4oTmzZunDz74wNGHAwAAQD45PABeunRJpUqVkiStW7dO3bp1k5ubm+69916dOHHC0YcDAABAPjk8AN5xxx1asWKFEhMTtXbtWrVt21aSlJyczAMSAAAAtwGHB8AxY8bopZdeUuXKldWkSRM1bdpU0p+zgQ0aNLjl/qdOnaoqVarIx8dHjRo10pYtW3JtGxUVJYvFkm2pXbu2XbvJkyerRo0a8vX1VXh4uF544QVduXLllmsFAAC4HRXIa2CSkpJktVpVr149ubn9mTG3b98uf39/1axZ86b7Xbx4sfr06aOpU6eqefPm+vjjj/Xpp5/q4MGDqlSpUrb2KSkpunz5su1zRkaG6tWrp+eee07jxo2TJC1YsEADBw7UrFmz1KxZMx0+fFhRUVHq0aOH3n///TzVxWtgAABAYbrV7OGwAPjqq6+qa9euuueeexzRXY6aNGmihg0b2j1NXKtWLXXt2lXR0dE33H/FihXq1q2b4uPjFRERIUl69tln9dNPP2nDhg22di+++KK2b99+3dnFvyIAAgCAwnTbvAfQarWqU6dOCg0N1VNPPaVvvvlGaWlpjupe6enp2rVrl+2ewmvatm2rbdu25amPmTNnqk2bNrbwJ0n33Xefdu3ape3bt0uSjh07plWrVqljx4659pOWlqbU1FS7BQAAoKhwWACcPXu2Tp8+rS+++EKBgYF68cUXVa5cOXXr1k1z5szRmTNnbqn/M2fOKDMzU8HBwXbrg4ODlZSUdMP9rVarVq9erUGDBtmt79mzp15//XXdd9998vT0VLVq1dS6dWuNGDEi176io6MVEBBgW8LDw2/upAAAAJzAoQ+BWCwWtWjRQm+//bZ+/vlnbd++Xffee69mzJihChUqqGXLlnr33Xd18uTJWzrGXxljsq3LyZw5cxQYGKiuXbvard+0aZMmTpyoqVOnavfu3Vq2bJm+/vprvf7667n2NXLkSKWkpNiWxMTEmzoXAAAAZ/AoyM5r1aqlWrVq6V//+pd+++03rVy5UitXrpQkvfTSS/nqq1y5cnJ3d88225ecnJxtVvDvjDGaNWuW+vTpIy8vL7ttr732mvr06WObGaxTp44uXryop556SqNGjbI9xPJX3t7e8vb2zlf9AAAAtwuHvwYmN0FBQRo4cKD++9//5jv8SZKXl5caNWqkmJgYu/UxMTFq1qzZdffdvHmzjh49qoEDB2bbdunSpWwhz93dXcYYFcAD0gAAAE53yzOA586dkzFGZcqU0W+//abvvvtONWrUUGRkpCPqszN8+HD16dNHjRs3VtOmTfXJJ58oISFBgwcPlvTnpdmTJ0/avov4mpkzZ6pJkyY51tS5c2dNmjRJDRo0UJMmTXT06FG99tprevjhh+Xu7u7wcwAAAHC2WwqAn376qaKjo5WVlaV//etfWrBggerWrauxY8fq+eef11NPPeWoOiVJPXr00NmzZzVhwgRZrVZFRkZq1apVtqd6rVarEhIS7PZJSUnR0qVLNWXKlBz7HD16tCwWi0aPHq2TJ08qKChInTt31sSJEx1aOwAAwO3ilt4DWK9ePf3444+6dOmSKlWqpPj4eAUFBSk1NVUtW7ZUXFycA0u9ffEeQAAAUJhuNXvc0gygu7u7fHx85OPjozvuuENBQUGSJH9//zw9mQsAAIDCd0sPgXh4eNi+M3fz5s229RcuXLi1qgAAAFBgbikAfvvtt7bXoQQEBNjWX758WTNnzry1ygAAAFAgbukScMmSJXNc7+/vr4yMDH399dfKysqy2/bwww/fyiEBAABwixz+Iug1a9aob9++OX71m8ViUWZmpqMPCQAAgHxw+Iugn332WXXv3l1Wq1VZWVl2C+EPAADA+RweAJOTkzV8+PAbfj0bAAAAnMPhAfDRRx/Vpk2bHN0tAAAAHOSWXgSdk0uXLql79+4KCgpSnTp15Onpabf9+eefd+Thbgu8CBoAABQmp74IOicLFy7U2rVr5evrq02bNtm9ENpisRTLAAgAAFCUODwAjh49WhMmTNCIESPk5ubwK8wAAAC4RQ5PaOnp6erRowfhDwAA4Dbl8JTWr18/LV682NHdAgAAwEEcfgk4MzNTb7/9ttauXau6detmewhk0qRJjj4kAAAA8sHhAXDfvn1q0KCBJGn//v122/76QAjy7o2vD2rr0ezfrAIAAG5fr7SvqdY1yju7jBw5PABu3LjR0V26vFMpl/Vz0gVnlwEAAPLhwpUMZ5eQK4cHQDje8w9W1xNNIpxdBgAAyIfqwSWdXUKuHBIA9+7dq8jIyDw/+XvgwAHVqFFDHh7kz7yoGcLLpQEAgOM45CngBg0a6OzZs3lu37RpUyUkJDji0AAAAMgnh0zBGWP02muvyc/PL0/t09PTb/pYU6dO1TvvvCOr1aratWtr8uTJatGiRY5to6KiNHfu3Gzr77rrLh04cECSdP/992vz5s3Z2nTo0EHffPPNTdcJAABwu3JIAGzZsqUOHTqU5/ZNmzaVr69vvo+zePFiDRs2TFOnTlXz5s318ccfq3379jp48KAqVaqUrf2UKVP05ptv2j5nZGSoXr166t69u23dsmXL7ALp2bNns7UBAAAoTizGGOPsIvKqSZMmatiwoaZNm2ZbV6tWLXXt2lXR0dE33H/FihXq1q2b4uPjFRGR80MVkydP1pgxY2S1WlWiRIk81XWrX8gMAACQH7eaPYrM97Wlp6dr165datu2rd36tm3batu2bXnqY+bMmWrTpk2u4e9am549e143/KWlpSk1NdVuAQAAKCqKTAA8c+aMMjMzFRwcbLc+ODhYSUlJN9zfarVq9erVGjRoUK5ttm/frv3791+3jSRFR0crICDAtoSHh+ftJAAAAG4DRSYAXvP3bxMxxuTpG0bmzJmjwMBAde3aNdc2M2fOVGRkpO65557r9jVy5EilpKTYlsTExDzVDgAAcDsolBfxpaWlydvb+5b6KFeunNzd3bPN9iUnJ2ebFfw7Y4xmzZqlPn36yMvLK8c2ly5d0qJFizRhwoQb1uLt7X3L5wMAAOAshTID2KxZs2zrDh8+nK8+vLy81KhRI8XExNitj4mJybH/v9q8ebOOHj2qgQMH5trmiy++UFpamnr37p2vugAAAIqaAp0B/Prrr/Xzzz/r4sWLOnXqlMLCwmzbunfvrj179uSrv+HDh6tPnz5q3LixmjZtqk8++UQJCQkaPHiwpD8vzZ48eVLz5s2z22/mzJlq0qSJIiMjc+175syZ6tq1q8qWLZuvmgAAAIqaAg2AtWvXVkJCgpKTk9WrVy8lJiaqYsWKCgsLk7u7e77769Gjh86ePasJEybIarUqMjJSq1atsj3Va7Vas33DSEpKipYuXaopU6bk2u/hw4e1detWrVu3Lt81AQAAFDWF8h7A7777Ti1btpQknTx5UvHx8YqMjFRgYGBBH7pQ8B5AAABQmG41exTKQyDXwp8kVahQQRUqVCiMwwIAACAHhRIAo6KiFBkZqdq1aysyMpL35gEAADhRoTwF/NRTT6lkyZL66quv9M9//lOBgYFq2rRpYRwaAAAAf1MoM4DNmjWze1XLd999pw0bNhTGoQEAAPA3hTIDmJKSYve5ZcuW+uWXXwrj0AAAAPibQnsI5OLFi7rzzjsVGRkpHx8f7d27tzAODQAAgL8plAC4Z88eZWZm6tChQ9q/f79+//13rVy5sjAODQAAgL8plACYkZGhRYsW6bffftNdd92l7t27y2KxFMahAQAA8DeFcg9gr169tHXrVlksFn355Zdq0KBBvr8LGAAAAI5RKDOAhw4dsrvnb/fu3Xrqqae0adOmwjg8AAAA/qJQZgBLlixp99Rvw4YN9fvvvxfGoQEAAPA3hTID+PHHH6tr165q3769atWqpZ9++kmVKlUqjEMDAADgbxw+A3j48GEtWbJEy5cv17FjxyRJderU0c6dO9WoUSOdOHFC1apV0xdffOHoQwMAACAPHDYDmJGRof79+2vhwoUyxkiSLBaLmjdvrg8++ED169dXjx49HHU4AAAA3CSHzQBOnDhRq1at0owZM/TLL79o//79mjNnjtLT09WiRQutX7/eUYcCAADALbCYa9N1t+iOO+7QmDFj1Ldv32zb3nvvPY0bN05HjhyRr6+vdu/erdatWzvisLeF1NRUBQQEKCUlRf7+/s4uBwAAFHO3mj0cNgOYmJioFi1a5LjtxRdfVM+ePTVw4EA1atRIP/zwg6MOCwAAgHxyWAAsU6aMzp07l+v2QYMGafXq1WrTpo1efPFFRx0WAAAA+eSwAHj//fdr/vz5uW4PDg6Wh4eHpk+fLi8vL0cdFgAAAPnksAD4yiuv6KOPPso1BO7cuVMVK1a85eNMnTpVVapUkY+Pjxo1aqQtW7bk2jYqKkoWiyXbUrt2bbt258+f15AhQxQaGiofHx/VqlVLq1atuuVaAQAAbkcOC4D169fXtGnTFBUVpS5dumjdunU6ffq0UlJStHLlSr3wwgu3/BqYxYsXa9iwYRo1apRiY2PVokULtW/fXgkJCTm2nzJliqxWq21JTExUmTJl1L17d1ub9PR0PfTQQzp+/Li+/PJLHTp0SDNmzFCFChVuqVYAAIDblcOeAr5m8+bNGj58uGJjY2WxWCRJxhj94x//0LJly+Tj43PTfTdp0kQNGzbUtGnTbOtq1aqlrl27Kjo6+ob7r1ixQt26dVN8fLwiIiIkSdOnT9c777yjn3/+WZ6enjdVF08BAwCAwnSr2cPhAfCa/fv3Ky4uTunp6apbt64aN258S/2lp6fLz89PS5Ys0SOPPGJbP3ToUMXFxWnz5s037KNz585KS0vTunXrbOs6dOigMmXKyM/PT//9738VFBSkxx9/XK+88orc3d3zVBsBEAAAFKZbzR4F9l3AkZGRioyMdFh/Z86cUWZmpoKDg+3WBwcHKykp6Yb7W61WrV69WgsXLrRbf+zYMX377bd64okntGrVKh05ckRDhgxRRkaGxowZk2NfaWlpSktLs31OTU29iTMCAABwDod/F3BBu3ZZ+RpjTLZ1OZkzZ44CAwPVtWtXu/VZWVkqX768PvnkEzVq1Eg9e/bUqFGj7C4z/110dLQCAgJsS3h4+E2dCwAAgDMUmQBYrlw5ubu7Z5vtS05OzjYr+HfGGM2aNUt9+vTJ9gqa0NBQ3XnnnXaXe2vVqqWkpCSlp6fn2N/IkSOVkpJiWxITE2/yrAAAAApfkQmAXl5eatSokWJiYuzWx8TEqFmzZtfdd/PmzTp69KgGDhyYbVvz5s119OhRZWVl2dYdPnxYoaGhub6v0NvbW/7+/nYLAABAUVFkAqAkDR8+XJ9++qlmzZqln376SS+88IISEhI0ePBgSX/OzOX0XcQzZ85UkyZNcrwn8f/+7/909uxZDR06VIcPH9Y333yjf//73xoyZEiBnw8AAIAzFNhDIAWhR48eOnv2rCZMmCCr1arIyEitWrXK9koXq9Wa7Z2AKSkpWrp0qaZMmZJjn+Hh4Vq3bp1eeOEF1a1bVxUqVNDQoUP1yiuvFPj5AAAAOEOBvQbGlfAaGAAAUJhuNXsUqUvAAAAAuHUEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdT5ALg1KlTVaVKFfn4+KhRo0basmVLrm2joqJksViyLbVr17a1mTNnTo5trly5UhinAwAAUOiKVABcvHixhg0bplGjRik2NlYtWrRQ+/btlZCQkGP7KVOmyGq12pbExESVKVNG3bt3t2vn7+9v185qtcrHx6cwTgkAAKDQFakAOGnSJA0cOFCDBg1SrVq1NHnyZIWHh2vatGk5tg8ICFBISIht2blzp86dO6f+/fvbtbNYLHbtQkJCCuN0AAAAnKLIBMD09HTt2rVLbdu2tVvftm1bbdu2LU99zJw5U23atFFERITd+j/++EMRERGqWLGiOnXqpNjY2Ov2k5aWptTUVLsFAACgqCgyAfDMmTPKzMxUcHCw3frg4GAlJSXdcH+r1arVq1dr0KBBdutr1qypOXPmaOXKlfr888/l4+Oj5s2b68iRI7n2FR0drYCAANsSHh5+cycFAADgBEUmAF5jsVjsPhtjsq3LyZw5cxQYGKiuXbvarb/33nvVu3dv1atXTy1atNAXX3yhO++8Ux9++GGufY0cOVIpKSm2JTEx8abOBQAAwBk8nF1AXpUrV07u7u7ZZvuSk5OzzQr+nTFGs2bNUp8+feTl5XXdtm5ubrr77ruvOwPo7e0tb2/vvBcPAABwGykyM4BeXl5q1KiRYmJi7NbHxMSoWbNm19138+bNOnr0qAYOHHjD4xhjFBcXp9DQ0FuqFwAA4HZVZGYAJWn48OHq06ePGjdurKZNm+qTTz5RQkKCBg8eLOnPS7MnT57UvHnz7PabOXOmmjRposjIyGx9jh8/Xvfee6+qV6+u1NRUffDBB4qLi9NHH31UKOcEAABQ2IpUAOzRo4fOnj2rCRMmyGq1KjIyUqtWrbI91Wu1WrO9EzAlJUVLly7VlClTcuzz/Pnzeuqpp5SUlKSAgAA1aNBA3333ne65554CPx8AAABnsBhjjLOLKOpSU1MVEBCglJQU+fv7O7scAABQzN1q9igy9wACAADAMQiAAAAALoYACAAA4GIIgAAAAC6GAAgAAOBiCIAAAAAuhgAIAADgYgiAAAAALoYACAAA4GIIgAAAAC6GAAgAAOBiCIAAAAAuhgAIAADgYgiAAAAALoYACAAA4GIIgAAAAC6GAAgAAOBiCIAAAAAuhgAIAADgYopcAJw6daqqVKkiHx8fNWrUSFu2bMm1bVRUlCwWS7aldu3aObZftGiRLBaLunbtWkDVAwAAOF+RCoCLFy/WsGHDNGrUKMXGxqpFixZq3769EhIScmw/ZcoUWa1W25KYmKgyZcqoe/fu2dqeOHFCL730klq0aFHQpwEAAOBURSoATpo0SQMHDtSgQYNUq1YtTZ48WeHh4Zo2bVqO7QMCAhQSEmJbdu7cqXPnzql///527TIzM/XEE09o/Pjxqlq1amGcCgAAgNMUmQCYnp6uXbt2qW3btnbr27Ztq23btuWpj5kzZ6pNmzaKiIiwWz9hwgQFBQVp4MCBeeonLS1NqampdgsAAEBR4eHsAvLqzJkzyszMVHBwsN364OBgJSUl3XB/q9Wq1atXa+HChXbr//e//2nmzJmKi4vLcy3R0dEaP358ntsDAADcTorMDOA1FovF7rMxJtu6nMyZM0eBgYF2D3hcuHBBvXv31owZM1SuXLk81zBy5EilpKTYlsTExDzvCwAA4GxFZgawXLlycnd3zzbbl5ycnG1W8O+MMZo1a5b69OkjLy8v2/pffvlFx48fV+fOnW3rsrKyJEkeHh46dOiQqlWrlq0/b29veXt738rpAAAAOE2RmQH08vJSo0aNFBMTY7c+JiZGzZo1u+6+mzdv1tGjR7Pd41ezZk3t27dPcXFxtuXhhx9W69atFRcXp/DwcIefBwAAgLMVmRlASRo+fLj69Omjxo0bq2nTpvrkk0+UkJCgwYMHS/rz0uzJkyc1b948u/1mzpypJk2aKDIy0m69j49PtnWBgYGSlG09AABAcVGkAmCPHj109uxZTZgwQVarVZGRkVq1apXtqV6r1ZrtnYApKSlaunSppkyZ4oySAQAAbjsWY4xxdhFFXWpqqgICApSSkiJ/f39nlwMAAIq5W80eReYeQAAAADgGARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAADAxXg4u4DiwBgjSUpNTXVyJQAAwBVcyxzXMkh+EQAd4MKFC5Kk8PBwJ1cCAABcyYULFxQQEJDv/SzmZqMjbLKysnTq1CmVKlVKFovF4f2npqYqPDxciYmJ8vf3d3j/roSxdAzG0TEYR8dhLB2DcXSMwhhHY4wuXLigsLAwubnl/44+ZgAdwM3NTRUrVizw4/j7+/MH0kEYS8dgHB2DcXQcxtIxGEfHKOhxvJmZv2t4CAQAAMDFEAABAABcDAGwCPD29tbYsWPl7e3t7FKKPMbSMRhHx2AcHYexdAzG0TGKwjjyEAgAAICLYQYQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMAbAImDp1qqpUqSIfHx81atRIW7ZscXZJt5XvvvtOnTt3VlhYmCwWi1asWGG33RijcePGKSwsTL6+vrr//vt14MABuzZpaWl67rnnVK5cOZUoUUIPP/ywfv3110I8C+eLjo7W3XffrVKlSql8+fLq2rWrDh06ZNeGsbyxadOmqW7durYXwDZt2lSrV6+2bWcMb050dLQsFouGDRtmW8dY5s24ceNksVjslpCQENt2xjHvTp48qd69e6ts2bLy8/NT/fr1tWvXLtv2IjWWBre1RYsWGU9PTzNjxgxz8OBBM3ToUFOiRAlz4sQJZ5d221i1apUZNWqUWbp0qZFkli9fbrf9zTffNKVKlTJLly41+/btMz169DChoaEmNTXV1mbw4MGmQoUKJiYmxuzevdu0bt3a1KtXz2RkZBTy2ThPu3btzOzZs83+/ftNXFyc6dixo6lUqZL5448/bG0YyxtbuXKl+eabb8yhQ4fMoUOHzKuvvmo8PT3N/v37jTGM4c3Yvn27qVy5sqlbt64ZOnSobT1jmTdjx441tWvXNlar1bYkJyfbtjOOefP777+biIgIExUVZX788UcTHx9v1q9fb44ePWprU5TGkgB4m7vnnnvM4MGD7dbVrFnTjBgxwkkV3d7+HgCzsrJMSEiIefPNN23rrly5YgICAsz06dONMcacP3/eeHp6mkWLFtnanDx50ri5uZk1a9YUWu23m+TkZCPJbN682RjDWN6K0qVLm08//ZQxvAkXLlww1atXNzExMaZVq1a2AMhY5t3YsWNNvXr1ctzGOObdK6+8Yu67775ctxe1seQS8G0sPT1du3btUtu2be3Wt23bVtu2bXNSVUVLfHy8kpKS7MbQ29tbrVq1so3hrl27dPXqVbs2YWFhioyMdOlxTklJkSSVKVNGEmN5MzIzM7Vo0SJdvHhRTZs2ZQxvwpAhQ9SxY0e1adPGbj1jmT9HjhxRWFiYqlSpop49e+rYsWOSGMf8WLlypRo3bqzu3burfPnyatCggWbMmGHbXtTGkgB4Gztz5owyMzMVHBxstz44OFhJSUlOqqpouTZO1xvDpKQkeXl5qXTp0rm2cTXGGA0fPlz33XefIiMjJTGW+bFv3z6VLFlS3t7eGjx4sJYvX6677rqLMcynRYsWadeuXYqOjs62jbHMuyZNmmjevHlau3atZsyYoaSkJDVr1kxnz55lHPPh2LFjmjZtmqpXr661a9dq8ODBev755zVv3jxJRe930qNQj4abYrFY7D4bY7Ktw/XdzBi68jg/++yz2rt3r7Zu3ZptG2N5YzVq1FBcXJzOnz+vpUuXql+/ftq8ebNtO2N4Y4mJiRo6dKjWrVsnHx+fXNsxljfWvn1723/XqVNHTZs2VbVq1TR37lzde++9khjHvMjKylLjxo3173//W5LUoEEDHThwQNOmTVPfvn1t7YrKWDIDeBsrV66c3N3ds/2rIDk5Odu/MJCza0+6XW8MQ0JClJ6ernPnzuXaxpU899xzWrlypTZu3KiKFSva1jOWeefl5aU77rhDjRs3VnR0tOrVq6cpU6Ywhvmwa9cuJScnq1GjRvLw8JCHh4c2b96sDz74QB4eHraxYCzzr0SJEqpTp46OHDnC72Q+hIaG6q677rJbV6tWLSUkJEgqev+PJADexry8vNSoUSPFxMTYrY+JiVGzZs2cVFXRUqVKFYWEhNiNYXp6ujZv3mwbw0aNGsnT09OujdVq1f79+11qnI0xevbZZ7Vs2TJ9++23qlKlit12xvLmGWOUlpbGGObDgw8+qH379ikuLs62NG7cWE888YTi4uJUtWpVxvImpaWl6aefflJoaCi/k/nQvHnzbK/GOnz4sCIiIiQVwf9HFuojJ8i3a6+BmTlzpjl48KAZNmyYKVGihDl+/LizS7ttXLhwwcTGxprY2FgjyUyaNMnExsbaXpXz5ptvmoCAALNs2TKzb98+06tXrxwfy69YsaJZv3692b17t3nggQdc7hUH//d//2cCAgLMpk2b7F4XcenSJVsbxvLGRo4cab777jsTHx9v9u7da1599VXj5uZm1q1bZ4xhDG/FX58CNoaxzKsXX3zRbNq0yRw7dsz88MMPplOnTqZUqVK2v0cYx7zZvn278fDwMBMnTjRHjhwxCxYsMH5+fmb+/Pm2NkVpLAmARcBHH31kIiIijJeXl2nYsKHttRz408aNG42kbEu/fv2MMX8+mj927FgTEhJivL29TcuWLc2+ffvs+rh8+bJ59tlnTZkyZYyvr6/p1KmTSUhIcMLZOE9OYyjJzJ4929aGsbyxAQMG2P68BgUFmQcffNAW/oxhDG/F3wMgY5k3195F5+npacLCwky3bt3MgQMHbNsZx7z76quvTGRkpPH29jY1a9Y0n3zyid32ojSWFmOMKdw5RwAAADgT9wACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAUsvvvv18Wi0UWi0VxcXF52icqKsq2z4oVKwq0PgDFHwEQABxs2LBh6tq163XbPPnkk7JarYqMjMxTn1OmTJHVanVAdQBAAAQAh9uxY4fuueee67bx8/NTSEiIPDw88tRnQECAQkJCHFEeABAAAcBRrl69Ki8vL23btk2jRo2SxWJRkyZN8rz/l19+qTp16sjX11dly5ZVmzZtdPHixQKsGICryts/PQEAN+Tu7q6tW7eqSZMmiouLU3BwsHx8fPK0r9VqVa9evfT222/rkUce0YULF7RlyxYZYwq4agCuiAAIAA7i5uamU6dOqWzZsqpXr16+9rVarcrIyFC3bt0UEREhSapTp05BlAkAXAIGAEeKjY3Nd/iTpHr16unBBx9UnTp11L17d82YMUPnzp0rgAoBgAAIAA4VFxd3UwHQ3d1dMTExWr16te666y59+OGHqlGjhuLj4wugSgCujgAIAA60b98+1a1b96b2tVgsat68ucaPH6/Y2Fh5eXlp+fLlDq4QALgHEAAcKisrS3v37tWpU6dUokQJBQQE5Gm/H3/8URs2bFDbtm1Vvnx5/fjjj/rtt99Uq1atAq4YgCtiBhAAHOiNN97Q4sWLVaFCBU2YMCHP+/n7++u7775Thw4ddOedd2r06NF677331L59+wKsFoCrYgYQAByod+/e6t27d773q1WrltasWVMAFQFAdswAAoATTJ06VSVLltS+ffvy1H7w4MEqWbJkAVcFwFVYDG8ZBYBCdfLkSV2+fFmSVKlSJXl5ed1wn+TkZKWmpkqSQkNDVaJEiQKtEUDxRgAEAABwMVwCBgAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABfj4ewCioOsrCydOnVKpUqVksVicXY5AACgmDPG6MKFCwoLC5ObW/7n8wiADnDq1CmFh4c7uwwAAOBiEhMTVbFixXzvRwB0gFKlSkn684fg7+/v5GoAAEBxl5qaqvDwcFsGyS8CoANcu+zr7+9PAAQAAIXmZm894yEQAAAAF0MABAAAcDEEQAAAABfDPYAAUMRkZmbq6tWrzi4DQAFyd3eXh4dHgb1ejgAIAEXIH3/8oV9//VXGGGeXAqCA+fn5KTQ0VF5eXg7vmwAIAEVEZmamfv31V/n5+SkoKIgXzwPFlDFG6enp+u233xQfH6/q1avf1Muer4cACABFxNWrV2WMUVBQkHx9fZ1dDoAC5OvrK09PT504cULp6eny8fFxaP88BAIARQwzf4BrcPSsn13fBdYzAAAAbksEQACAU40bN07169d3aJ+bNm2SxWLR+fPnJUlz5sxRYGCgQ48B5IfFYtGKFSucXYYNARAAUKCioqJksVhksVjk6empqlWr6qWXXtLFixclSS+99JI2bNhQoDX06NFDhw8fLtBjIG9utyBUWKxWq9q3b+/sMmx4CAQAUOD+8Y9/aPbs2bp69aq2bNmiQYMG6eLFi5o2bZpKliypkiVLFujxfX19b9sHZ65evSpPT09nl2GHmhx/zJCQkEI7Vl4wAwgAKHDe3t4KCQlReHi4Hn/8cT3xxBO2WaC/XwKOiopS165dNX78eJUvX17+/v56+umnlZ6ebmtjjNHbb7+tqlWrytfXV/Xq1dOXX36Z6/H/fgn42jE/++wzVa5cWQEBAerZs6cuXLhw08eQpMqVK+v111/X448/rpIlSyosLEwffvihXRuLxaLp06erS5cuKlGihN544w1J0ldffaVGjRrJx8dHVatW1fjx45WRkWFXc6VKleTt7a2wsDA9//zztm1Tp05V9erV5ePjo+DgYD366KN2NU2ePNmuhvr162vcuHG3XNPf7dixQw899JDKlSungIAAtWrVSrt377arRZIeeeQRWSwW2+e/O378uCwWi7744gvdf//98vHx0fz58yVJs2fPVq1ateTj46OaNWtq6tSptv3S09P17LPPKjQ0VD4+PqpcubKio6Nt21NSUvTUU0/Zfq8eeOAB7dmzx26M69evr1mzZqlq1ary9vbWxx9/rAoVKigrK8uuxocfflj9+vWzfZ42bZqqVasmLy8v1ahRQ5999pld+7/OfF7v/AqNwS1LSUkxkkxKSoqzSwFQjF2+fNkcPHjQXL582RhjTFZWlrmYdtUpS1ZWVp7r7tevn+nSpYvduueee86ULVvWGGPM2LFjTb169ezalyxZ0vTo0cPs37/ffP311yYoKMi8+uqrtjavvvqqqVmzplmzZo355ZdfzOzZs423t7fZtGmTMcaYjRs3Gknm3LlzxhhjZs+ebQICAmz7jx071pQsWdJ069bN7Nu3z3z33XcmJCQkX8fISUREhClVqpSJjo42hw4dMh988IFxd3c369ats7WRZMqXL29mzpxpfvnlF3P8+HGzZs0a4+/vb+bMmWN++eUXs27dOlO5cmUzbtw4Y4wxS5YsMf7+/mbVqlXmxIkT5scffzSffPKJMcaYHTt2GHd3d7Nw4UJz/Phxs3v3bjNlyhS7mt5//327OuvVq2fGjh17SzXlZMOGDeazzz4zBw8eNAcPHjQDBw40wcHBJjU11RhjTHJyspFkZs+ebaxWq0lOTs6xn/j4eCPJVK5c2SxdutQcO3bMnDx50nzyyScmNDTUtm7p0qWmTJkyZs6cOcYYY9555x0THh5uvvvuO3P8+HGzZcsWs3DhQmPMn39emjdvbjp37mx27NhhDh8+bF588UVTtmxZc/bsWdvvRYkSJUy7du3M7t27zZ49e8yZM2eMl5eXWb9+va2+33//3Xh5eZm1a9caY4xZtmyZ8fT0NB999JE5dOiQee+994y7u7v59ttv7cZ4+fLl1z2/v/v7n/m/utXswSVgACiiLl/N1F1j1jrl2AcntJOf1839FbJ9+3YtXLhQDz74YK5tvLy8NGvWLPn5+al27dqaMGGCXn75Zb3++uu6fPmyJk2apG+//VZNmzaVJFWtWlVbt27Vxx9/rFatWuWpjqysLM2ZM0elSpWSJPXp00cbNmzQxIkTdfHixZs+RvPmzTVixAhJ0p133qn//e9/ev/99/XQQw/Z2jz++OMaMGCA7XOfPn00YsQI24xS1apV9frrr+tf//qXxo4dq4SEBIWEhKhNmzby9PRUpUqVdM8990iSEhISVKJECXXq1EmlSpVSRESEGjRokKcx+Kv81pSTBx54wO7zxx9/rNKlS2vz5s3q1KmTgoKCJEmBgYE3vCQqScOGDVO3bt1sn19//XW99957tnVVqlTRwYMH9fHHH6tfv35KSEhQ9erVdd9998lisSgiIsK278aNG7Vv3z4lJyfL29tbkvTuu+9qxYoV+vLLL/XUU09J+nMW8bPPPrPVKv15C8Nff2eXLFmiMmXK2D6/++67ioqK0jPPPCNJGj58uH744Qe9++67at26dZ7PrzARAAEABe7rr79WyZIllZGRoatXr6pLly7ZLo3+Vb169eTn52f73LRpU/3xxx9KTExUcnKyrly5YheopD//4s5P8KlcubIt/ElSaGiokpOTJUkHDx686WNcC4x//fz3S7CNGze2+7xr1y7t2LFDEydOtK3LzMzUlStXdOnSJXXv3l2TJ09W1apV9Y9//EMdOnRQ586d5eHhoYceekgRERG2bf/4xz/0yCOP2I1fXuS3ppz6T05O1pgxY/Ttt9/q9OnTyszM1KVLl5SQkJCvWnKq6bffflNiYqIGDhyoJ5980rY+IyNDAQEBkv68feChhx5SjRo19I9//EOdOnVS27Ztbefzxx9/qGzZsnbHuHz5sn755Rfb54iICLvwJ0lPPPGEnnrqKU2dOlXe3t5asGCBevbsKXd3d0nSTz/9ZAuQ1zRv3lxTpkzJ8/kVNgIgABRRvp7uOjihndOOnR+tW7fWtGnT5OnpqbCwsJu+2d1isdjuxfrmm29UoUIFu+3XZnby4u81/LVvRx3jr33/VYkSJew+Z2Vlafz48TnOBvn4+Cg8PFyHDh1STEyM1q9fr2eeeUbvvPOONm/erFKlSmn37t3atGmT1q1bpzFjxmjcuHHasWOHAgMD5ebmlu27o69evZrtOPmtKSdRUVH67bffNHnyZEVERMjb21tNmza1u38zP/5a07WfyYwZM9SkSRO7dteCWMOGDRUfH6/Vq1dr/fr1euyxx9SmTRt9+eWXysrKUmhoqDZt2pTtOH+9P/Tv4yBJnTt3VlZWlr755hvdfffd2rJliyZNmmTX5u8/Y2PMDV/antOxCgsBEACKKIvFctOXYQtbiRIldMcdd+S5/Z49e3T58mXbk7s//PCDSpYsqYoVK6p06dLy9vZWQkJCni/35tddd91108f44Ycfsn2uWbPmdfdp2LChDh06dN0x8vX11cMPP6yHH35YQ4YMUc2aNbVv3z41bNhQHh4eatOmjdq0aaOxY8cqMDBQ3377rbp166agoCBZrVZbP6mpqYqPj7/heeSlpr/bsmWLpk6dqg4dOkiSEhMTdebMGbs2np6eyszMzHOf1wQHB6tChQo6duyYnnjiiVzb+fv7q0ePHurRo4ceffRR/eMf/9Dvv/+uhg0bKikpSR4eHrk+fJIbX19fdevWTQsWLNDRo0d15513qlGjRrbttWrV0tatW9W3b1/bum3btqlWrVr5Ps/CUjT+z5FHGRkZGjdunBYsWKCkpCSFhoYqKipKo0ePzvXrVJYtW6Zp06YpLi5OaWlpql27tsaNG6d27Zzzr2oAwJ+XWgcOHKjRo0frxIkTGjt2rJ599lm5ubmpVKlSeumll/TCCy8oKytL9913n1JTU7Vt2zaVLFnS7snMm3Urx/jf//6nt99+W127dlVMTIyWLFmib7755rrHGzNmjDp16qTw8HB1795dbm5u2rt3r/bt26c33nhDc+bMUWZmppo0aSI/Pz999tln8vX1VUREhL7++msdO3ZMLVu2VOnSpbVq1SplZWWpRo0akv68L2/OnDnq3LmzSpcurddee802Y3YrNeXkjjvu0GeffabGjRsrNTVVL7/8crbX71SuXFkbNmxQ8+bN5e3trdKlS9+wlmvGjRun559/Xv7+/mrfvr3S0tK0c+dOnTt3TsOHD9f777+v0NBQ1a9fX25ublqyZIlCQkIUGBioNm3aqGnTpurataveeust1ahRQ6dOndKqVavUtWvXG16OfeKJJ9S5c2cdOHBAvXv3ttv28ssv67HHHlPDhg314IMP6quvvtKyZcu0fv36PJ9bobupR0duU2+88YYpW7as+frrr018fLxZsmSJKVmypJk8eXKu+wwdOtS89dZbZvv27ebw4cNm5MiRxtPT0+zevTvPx+UpYACF4XpPBN7OcnoK+K9yegq4S5cuZsyYMaZs2bKmZMmSZtCgQebKlSu2NllZWWbKlCmmRo0axtPT0wQFBZl27dqZzZs3G2Py9hTwX49pjDHvv/++iYiIyPMxchIREWHGjx9vHnvsMePn52eCg4Oz/R2kvzwN+ldr1qwxzZo1M76+vsbf39/cc889tid9ly9fbpo0aWL8/f1NiRIlzL333mt7KnXLli2mVatWpnTp0sbX19fUrVvXLF682NZvSkqKeeyxx4y/v78JDw83c+bMyfEp4PzWlJPdu3ebxo0bG29vb1O9enWzZMmSbE8hr1y50txxxx3Gw8PDbrz/6tpTsrGxsdm2LViwwNSvX994eXmZ0qVLm5YtW5ply5YZY4z55JNPTP369U2JEiWMv7+/efDBB+3+Pk9NTTXPPfecCQsLM56eniY8PNw88cQTJiEhwRiT8+/FNRkZGSY0NNRIMr/88ku27VOnTjVVq1Y1np6e5s477zTz5s2z264cngLO6fz+qiCfArb8v6KKhU6dOik4OFgzZ860rfvnP/9p+9dSXtWuXVs9evTQmDFj8tQ+NTVVAQEBSklJkb+/f77rBoC8uHLliuLj41WlSpVc78EqDqKionT+/Pki+W0RlStX1rBhwzRs2DBnl4Ji4Hp/5m81exSrF0Hfd9992rBhg+3rfvbs2aOtW7fa7kXIi6ysLF24cEFlypTJtU1aWppSU1PtFgAAgKKiWN0D+MorryglJUU1a9aUu7u7MjMzNXHiRPXq1SvPfbz33nu6ePGiHnvssVzbREdHa/z48Y4oGQAAoNAVqwC4ePFizZ8/XwsXLlTt2rUVFxenYcOGKSwsLE83BX/++ecaN26c/vvf/6p8+fK5ths5cqSGDx9u+5yamqrw8HCHnAMAuLo5c+Y4u4Sbdvz4cWeXAORJsQqAL7/8skaMGKGePXtKkurUqaMTJ04oOjr6hgFw8eLFGjhwoJYsWaI2bdpct623t/dNvQcKAADgdlCs7gG8dOlStte9uLu7Z/sC57/7/PPPFRUVpYULF6pjx44FWSIAAIDTFasZwM6dO2vixImqVKmSateurdjYWE2aNMnuuw1HjhypkydPat68eZL+DH99+/bVlClTdO+99yopKUnSny99vPbVMgBwOylGL28AcB0F+We9WM0Afvjhh3r00Uf1zDPPqFatWnrppZf09NNP6/XXX7e1sVqtdt9J+PHHHysjI0NDhgxRaGiobRk6dKgzTgEAcnXt5b03+7VaAIqWS5cuScr+tYWOUKzeA+gsvAcQQGEwxighIUFXr15VWFhYrt9wBKBoM8bo0qVLSk5OVmBgoEJDQ7O1udXsUawuAQNAcWaxWBQaGqr4+HidOHHC2eUAKGCBgYEKCQkpkL4JgABQhHh5eal69epcBgaKOU9Pzzx9Z/PNIgACQBHj5uZWrL8KDkDB4wYSAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxxSoAZmRkaPTo0apSpYp8fX1VtWpVTZgwQVlZWbnuY7Va9fjjj6tGjRpyc3PTsGHDCq9gAAAAJ/BwdgGO9NZbb+n/a+/eo6qq8/+Pv45cjqCBeUFAUZC8BeiUdtGakCzNa42jMzqjglST3zQvTS0lK7UZB7PvWDY59s0L6TB99ZsiS0fTpBGVtLwioKU2XjCEyIpLJQeV/fujn2cNIyqXwz7Cfj7W2mu19/589n6fz7J6+Tl7f87bb7+tlStXKiIiQvv379eECRPk7++vqVOnVtnH4XCoTZs2mjVrll5//XWTKwYAADBfowqAe/bs0aOPPqohQ4ZIkkJDQ/W///u/2r9//zX7hIaGatGiRZKkFStWmFInAACAOzWqr4Dvv/9+ffTRRzp+/Lgk6fDhw8rIyNDgwYNdeh+Hw6GSkpJKGwAAQEPRqGYAZ8yYoeLiYnXr1k0eHh66fPmy5s2bpzFjxrj0PomJiZo7d65LrwkAAGCWRjUDuGbNGiUnJ+u9997TwYMHtXLlSv33f/+3Vq5c6dL7JCQkqLi42LmdPXvWpdcHAACoT41qBvD555/XzJkzNXr0aElSVFSUzpw5o8TERMXGxrrsPna7XXa73WXXAwAAMFOjmgH88ccf1aRJ5Y/k4eFx3WVgAAAArKZRzQAOGzZM8+bNU4cOHRQREaFDhw5p4cKFio+Pd7ZJSEhQXl6eVq1a5TyWmZkpSfr+++/19ddfKzMzU97e3rr99tvN/ggAAAD1zmYYhuHuIlyltLRUL730ktavX6/CwkIFBwdrzJgxevnll+Xt7S1JiouL0+nTp5Wenu7sZ7PZrrpWx44ddfr06Wrdt6SkRP7+/iouLpafn58rPgoAAMA11TV7NKoA6C4EQAAAYKa6Zo9G9QwgAAAAbowACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDEEQAAAAIshAAIAAFgMARAAAMBiCIAAAAAWQwAEAACwGAIgAACAxRAAAQAALIYACAAAYDGNKgBeunRJL774osLCwuTj46NOnTrplVdeUUVFxXX77dixQ7169VLTpk3VqVMnvf322yZVDAAAYD5PM26yYcOGGvd5+OGH5ePjU6M+r776qt5++22tXLlSERER2r9/vyZMmCB/f39NnTq1yj6nTp3S4MGD9eSTTyo5OVkff/yxnn76abVp00a//OUva1w3AADAzc5mGIZR3zdp0qRmE402m00nTpxQp06datRv6NChatu2rZYvX+489stf/lK+vr7629/+VmWfGTNmaMOGDfrss8+cxyZOnKjDhw9rz5491bpvSUmJ/P39VVxcLD8/vxrVDAAAUFN1zR6mfQVcUFCgioqKam2+vr61usf999+vjz76SMePH5ckHT58WBkZGRo8ePA1++zZs0cDBgyodGzgwIHav3+/Ll68WKs6AAAAbmamfAUcGxtbo69zx44dW6s0O2PGDBUXF6tbt27y8PDQ5cuXNW/ePI0ZM+aafQoKCtS2bdtKx9q2batLly7p/PnzCgoKuqqPw+GQw+Fw7peUlNS4VgAAAHcxJQAmJSXVqP2SJUtqdZ81a9YoOTlZ7733niIiIpSZmalp06YpODhYsbGx1+xns9kq7V/5Vvw/j1+RmJiouXPn1qpGAAAAd2tUbwE///zzmjlzpkaPHq2oqCiNGzdO06dPV2Ji4jX7BAYGqqCgoNKxwsJCeXp6qlWrVlX2SUhIUHFxsXM7e/asSz8HAABAfTItAH766af64IMPKh1btWqVwsLCFBAQoN/97neVvlatjR9//PGqF048PDyuuwxMnz59tG3btkrHPvzwQ/Xu3VteXl5V9rHb7fLz86u0AQAANBSmBcA5c+YoKyvLuZ+dna3HH39cDz30kGbOnKmNGzded6auOoYNG6Z58+Zp06ZNOn36tNavX6+FCxfqF7/4hbNNQkKCxo8f79yfOHGizpw5o2effVafffaZVqxYoeXLl+u5556rUy0AAAA3K1OeAZSkzMxM/eEPf3Dur169Wvfcc4+WLl0qSQoJCdHs2bM1Z86cWt/jL3/5i1566SU9/fTTKiwsVHBwsJ566im9/PLLzjb5+fnKzc117oeFhWnz5s2aPn26Fi9erODgYL355pusAQgAABotU9YBlKSmTZvqxIkTCgkJkfTTki2PPPKIXnzxRUnS6dOnFRUVpdLSUjPKcSnWAQQAAGZqMOsAtm3bVqdOnZIklZeX6+DBg+rTp4/zfGlp6TWfuQMAAIDrmBYAH3nkEc2cOVO7du1SQkKCfH199fOf/9x5PisrS+Hh4WaVAwAAYFmmPQP4xz/+USNGjFB0dLSaN2+ud999V97e3s7zK1asuOoXOQAAAOB6pgXA4uJi7dq1S8XFxWrevLk8PDwqnX///ffVvHlzs8oBAACwLNMCYJcuXdSuXTvFxMTowQcfVL9+/RQaGuo837JlS7NKAQAAsDTTAuCOHTu0Y8cOpaena9KkSSorK1OHDh304IMPKiYmRjExMWrXrp1Z5QAAAFiWacvA/LuLFy9qz549Sk9PV3p6uj755BM5HA7ddtttOnbsmNnl1BnLwAAAADPVNXu4JQBeceHCBWVkZGjr1q1aunSpvv/+e12+fNld5dQaARAAAJiprtnDtK+AJamsrEy7d+/W9u3blZ6ern379iksLEzR0dFasmSJoqOjzSwHAADAkkwLgNHR0dq3b5/Cw8P1wAMP6JlnnlF0dLTatm1rVgkAAACQiQFw9+7dCgoKUkxMjPr166cHHnhArVu3Nuv2AAAA+P9M+yWQoqIivfPOO/L19dWrr76qdu3aKSoqSpMnT9batWv19ddfm1UKAACApbntJZDS0lJlZGQ4nwc8fPiwOnfurJycHHeUUye8BAIAAMxU1+xh2gzgf2rWrJlatmypli1b6tZbb5Wnp6c+++wzd5UDAABgGaY9A1hRUaH9+/crPT1d27dv18cff6wffvjB+esgixcvVkxMjFnlAAAAWJZpAbBFixb64YcfFBQUpH79+mnhwoWKiYlReHi4WSUAAABAJgbA1157TTExMerSpYtZtwQAAEAVTAuATz31lFm3AgAAwHWY+ksgV5SVlSkrK0uFhYWqqKiodG748OHuKAkAAMAyTA+AW7Zs0fjx43X+/Pmrztlstjr9FnBoaKjOnDlz1fGnn35aixcvrrLP4sWL9dZbb+n06dPq0KGDZs2apfHjx9e6BgAAgJud6cvATJ48WaNGjVJ+fr4qKioqbXUJf5K0b98+5efnO7dt27ZJkkaNGlVl+yVLlighIUFz5szRkSNHNHfuXE2aNEkbN26sUx0AAAA3M9MXgvbz89OhQ4dMeft32rRp+sc//qETJ07IZrNddb5v376677779Nprr1Xqs3//fmVkZFT7PiwEDQAAzNTgFoIeOXKk0tPT6/0+5eXlSk5OVnx8fJXhT5IcDoeaNm1a6ZiPj4/27t2rixcv1nuNAAAA7mD6M4BvvfWWRo0apV27dikqKkpeXl6Vzk+ZMsUl90lNTVVRUZHi4uKu2WbgwIFatmyZHnvsMd155506cOCAVqxYoYsXL+r8+fMKCgqqsp/D4ZDD4XDul5SUuKRmAAAAM5geAN977z1t3bpVPj4+Sk9PrzQ7Z7PZXBYAly9frkGDBik4OPiabV566SUVFBTo3nvvlWEYatu2reLi4rRgwQJ5eHhcs19iYqLmzp3rkjoBAADMZvozgIGBgZoyZYpmzpypJk3q5xvoM2fOqFOnTkpJSdGjjz56w/YXL17UV199paCgIL3zzjuaMWOGioqKrllfVTOAISEhPAMIAABMUddnAE2fASwvL9evf/3regt/kpSUlKSAgAANGTKkWu29vLzUvn17SdLq1as1dOjQ69Znt9tlt9tdUisAAIDZTH8JJDY2VmvWrKm361dUVCgpKUmxsbHy9KycbxMSEiqt8Xf8+HElJyfrxIkT2rt3r0aPHq2cnBz96U9/qrf6AAAA3M30GcDLly9rwYIF2rp1q3r06HHVSyALFy6s0/XT0tKUm5ur+Pj4q87l5+crNze3Ui1//vOfdezYMXl5eSkmJka7d+9WaGhonWoAAAC4mZn+DGBMTMw1z9lsNv3zn/80sRrXYB1AAABgpgb3DOD27dvNviUAAAD+jSnPAGZlZamioqLa7Y8cOaJLly7VY0UAAADWZUoAvOOOO/TNN99Uu32fPn0qPasHAAAA1zHlK2DDMPTSSy/J19e3Wu3Ly8vruSIAAADrMiUAPvDAAzp27Fi12/fp00c+Pj71WBEAAIB1mRIA09PTzbgNAAAAqsH0t4BRc5uz8/VF4ffuLgMAANTAI5GB6tL2FneXUSUCYAPwj6xz2pxd4O4yAABADYS2bkYARO3df1sbtfD1dncZAACgBjq2rN7Lr+5AAGwAfnNPB3eXAAAAGhFT1gEEAADAzcPtM4Dffvutli1bJi8vL02fPt3d5QAAADR6bp8BHDlypJo1a6Zly5ZJknJycjRr1iw3VwUAANB4uT0AlpaWatKkSfL2/uklh8jISG3evNnNVQEAADRebg+AAQEBOnfunGw2m/NYWVmZGysCAABo3Nz+DODrr7+u2NhYFRYWas2aNdqyZYu6devm7rIAAAAaLZthGIa7iygvL1dqaqqys7MVGBioCRMmyNf35l075z+VlJTI399fxcXF8vPzc3c5AACgkatr9nD7DODnn3+ujRs3qkWLFho0aJAiIyMbVPgDAABoaNz+DOCgQYNUXl6uoqIi/c///I/69eunrl27urssAACARsvtATAwMFCzZs3S888/r5UrV+rgwYM6evRora4VGhoqm8121TZp0qRr9vn73/+unj17ytfXV0FBQZowYYK++eab2n4cAACAm57bA+DAgQP1t7/9rdIxDw+PWl1r3759ys/Pd27btm2TJI0aNarK9hkZGRo/frwef/xxHTlyRO+//7727dunJ554olb3BwAAaAjc/gzg3r17tWLFCs2dO1d33323oqKiFBUVpaFDh9b4Wm3atKm0P3/+fIWHhys6OrrK9p988olCQ0M1ZcoUSVJYWJieeuopLViwoOYfBAAAoIFw+wzg5s2blZubq4MHD2ry5Mlq1aqV0tLS6nzd8vJyJScnKz4+vtIag/+ub9+++vLLL7V582YZhqGvvvpKa9eu1ZAhQ+p8fwAAgJuV25aBWbRokaZOnapjx46pc+fOatLEtVn0//7v//Sb3/xGubm5Cg4Ovma7tWvXasKECSorK9OlS5c0fPhwrV27Vl5eXtfs43A45HA4nPslJSUKCQlhGRgAAGCKui4D47YZwMjISEnS9OnT1bVrV915550aN26cXn31VW3atKnO11++fLkGDRp03fB39OhRTZkyRS+//LIOHDigLVu26NSpU5o4ceJ1r52YmCh/f3/nFhISUud6AQAAzHJTLAQt/ZRkc3JylJOTo6NHj+qNN96o9bXOnDmjTp06KSUlRY8++ug1240bN05lZWV6//33nccyMjL085//XOfOnVNQUFCV/ZgBBAAA7tRgF4J+9tln1aNHD/Xo0UMRERHy8/NT37591bdv3zpfOykpSQEBATd8lu/HH3+Up2flIbjyBvL1crHdbpfdbq9znQAAAO7gtgAYHR2trKwsbdq0SUeOHJGHh4ciIiKcobA2bwFLUkVFhZKSkhQbG3tVuEtISFBeXp5WrVolSRo2bJiefPJJLVmyRAMHDlR+fr6mTZumu++++7pfHQMAADRkbguAjz76aKWvZy9cuKCcnBxlZWUpLS2t1gEwLS1Nubm5io+Pv+pcfn6+cnNznftxcXEqLS3VW2+9pd///vdq0aKFHnzwQb366qu1ujcAAEBD4PZnAL/99lstW7ZM3t7emjZtmjtLqbW6fg8PAABQEw32LeArRo4cqWbNmmnp0qWSpJycHM2aNcvNVQEAADRebg+ApaWlmjRpkry9vSX9tDzM5s2b3VwVAABA4+X2ABgQEKBz585V+rWOsrIyN1YEAADQuLn9t4Bff/11xcbGqrCwUGvWrNGWLVvUrVs3d5cFAADQaLn9JRDpp9/tTU1NVXZ2tgIDAzVhwgT5+vq6u6xq4yUQAABgpga7EPQV2dnZeuONN/Tdd98pKipKw4cPb1DhDwAAoKFx+zOAI0eOVHR0tBISEhQcHKzhw4fro48+cndZAAAAjZbbZwD9/f01fvx4SdJdd92lESNG6KGHHtLhw4fdXBkAAEDj5PYZwE6dOmnhwoXO395t2bKlmjZt6uaqAAAAGi+3B0CHw6HFixerQ4cOeuSRRxQZGan+/fsrLy/P3aUBAAA0Sm57C3jRokWaOnWqjh07ps6dO+vChQvKysqqtJ07d07/+te/3FFejfAWMAAAMFODfQs4MjJSkjR9+nR98cUXat68uSIiIhQZGanBgwdr8eLF7ioNAACgUbsp1gGUfkqyOTk5ysnJ0dGjR/XGG2+4u6RqYwYQAACYqa7Z46YJgA0ZARAAAJipwX4FfEV2drZef/11FRUVKSoqSk888YRCQkLcXRYAAECj5fa3gEeOHKl+/fqxEDQAAIBJ3D4DyELQAAAA5nL7DCALQQMAAJjL7QGwrKyMhaABAABM5LYAmJeXp7y8PKWmpupf//qXPv/8c82ePVvTpk1TcXGxRo8erfDw8BpdMzQ0VDab7apt0qRJVbaPi4ursn1ERIQrPiIAAMBNyfRlYD7++GONHTtWubm5kqTWrVsrLi5Os2bNqvMSKl9//bUuX77s3M/JydHDDz+s7du3q1+/fle1Ly4u1oULF5z7ly5dUs+ePfXMM89ozpw51b4vy8AAAAAzNbhlYJ566ilFRERo3bp1stvtOnDggN58802lpKRoz549at26da2v3aZNm0r78+fPV3h4uKKjo6ts7+/vL39/f+d+amqqvvvuO02YMKHWNQAAANzsTJ8B9PHxUVZWljp37uw8ZhiGfvWrX8nLy0vvvfeeS+5TXl6u4OBgPfvss3rhhReq1WfYsGFyOBz68MMPr9vO4XDI4XA490tKShQSEsIMIAAAMEVdZwBNfwawe/fuKigoqHTMZrPplVde0caNG112n9TUVBUVFSkuLq5a7fPz8/XBBx/oiSeeuGHbxMRE5+yhv78/C1cDAIAGxfQAGBcXp9/97nfOZwCvKC4urvR1bF0tX75cgwYNUnBwcLXav/vuu2rRooUee+yxG7ZNSEhQcXGxczt79mwdqwUAADCP6c8ATps2TZLUpUsXjRgxQj/72c90+fJlJScn67XXXnPJPc6cOaO0tDSlpKRUq71hGFqxYoXGjRsnb2/vG7a32+2y2+11LRMAAMAtTA+ABQUFOnTokA4fPqzMzEy9++67OnHihGw2m+bPn69NmzapR48e6tGjhx555JFa3SMpKUkBAQEaMmRItdrv2LFDX3zxhR5//PFa3Q8AAKAhMf0lkKqUlZUpOztbmZmZzmCYk5OjoqKiGl+roqJCYWFhGjNmjObPn1/pXEJCgvLy8rRq1apKx8eNG6cTJ07ok08+qVX9LAMDAADM1OCWgalK06ZNddddd+muu+6q87XS0tKUm5ur+Pj4q87l5+dX+ezhunXrtGjRojrfGwAAoCG4KWYAGzpmAAEAgJka3DIwAAAAcC8CIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQACAABYDAEQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQACAABYDAEQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACymUQXA0NBQ2Wy2q7ZJkyZds4/D4dCsWbPUsWNH2e12hYeHa8WKFSZWDQAAYC5PdxfgSvv27dPly5ed+zk5OXr44Yc1atSoa/b51a9+pa+++krLly/XbbfdpsLCQl26dMmMcgEAANyiUQXANm3aVNqfP3++wsPDFR0dXWX7LVu2aMeOHTp58qRatmwp6adZRAAAgMasUX0F/O/Ky8uVnJys+Ph42Wy2Ktts2LBBvXv31oIFC9SuXTt16dJFzz33nC5cuHDdazscDpWUlFTaAAAAGopGNQP471JTU1VUVKS4uLhrtjl58qQyMjLUtGlTrV+/XufPn9fTTz+tb7/99rrPASYmJmru3Ln1UDUAAED9sxmGYbi7iPowcOBAeXt7a+PGjddsM2DAAO3atUsFBQXy9/eXJKWkpGjkyJH64Ycf5OPjU2U/h8Mhh8Ph3C8pKVFISIiKi4vl5+fn2g8CAADwH0pKSuTv71/r7NEoZwDPnDmjtLQ0paSkXLddUFCQ2rVr5wx/ktS9e3cZhqEvv/xSnTt3rrKf3W6X3W53ac0AAABmaZTPACYlJSkgIEBDhgy5brv77rtP586d0/fff+88dvz4cTVp0kTt27ev7zIBAADcotEFwIqKCiUlJSk2NlaenpUnOBMSEjR+/Hjn/m9+8xu1atVKEyZM0NGjR7Vz5049//zzio+Pv+bXvwAAAA1dowuAaWlpys3NVXx8/FXn8vPzlZub69xv3ry5tm3bpqKiIvXu3Vu//e1vNWzYML355ptmlgwAAGCqRvsSiJnq+iAmAABATdQ1ezS6GUAAAABcHwEQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQACAABYDAEQAADAYgiAAAAAFkMABAAAsBgCIAAAgMUQAAEAACyGAAgAAGAxBEAAAACLIQACAABYDAEQAADAYgiAAAAAFtOoAmBoaKhsNttV26RJk6psn56eXmX7zz//3OTKAQAAzOPp7gJcad++fbp8+bJzPycnRw8//LBGjRp13X7Hjh2Tn5+fc79Nmzb1ViMAAIC7NaoA+J/Bbf78+QoPD1d0dPR1+wUEBKhFixb1WBkAAMDNo1F9BfzvysvLlZycrPj4eNlstuu2veOOOxQUFKT+/ftr+/btN7y2w+FQSUlJpQ0AAKChaLQBMDU1VUVFRYqLi7tmm6CgIL3zzjtat26dUlJS1LVrV/Xv3187d+687rUTExPl7+/v3EJCQlxcPQAAQP2xGYZhuLuI+jBw4EB5e3tr48aNNeo3bNgw2Ww2bdiw4ZptHA6HHA6Hc7+kpEQhISEqLi6u9CwhAABAfSgpKZG/v3+ts0ejegbwijNnzigtLU0pKSk17nvvvfcqOTn5um3sdrvsdnttywMAAHCrRvkVcFJSkgICAjRkyJAa9z106JCCgoLqoSoAAICbQ6ObAayoqFBSUpJiY2Pl6Vn54yUkJCgvL0+rVq2SJL3xxhsKDQ1VRESE86WRdevWad26de4oHQAAwBSNLgCmpaUpNzdX8fHxV53Lz89Xbm6uc7+8vFzPPfec8vLy5OPjo4iICG3atEmDBw82s2QAAABTNdqXQMxU1wcxAQAAaqKu2aNRPgMIAACAayMAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAsxtPdBTQGhmFIkkpKStxcCQAAsIIrmeNKBqkpAqALlJaWSpJCQkLcXAkAALCS0tJS+fv717ifzahtdIRTRUWFzp07p1tuuUU2m83l1y8pKVFISIjOnj0rPz8/l1/fShhL12AcXYNxdB3G0jUYR9cwYxwNw1BpaamCg4PVpEnNn+hjBtAFmjRpovbt29f7ffz8/PgX0kUYS9dgHF2DcXQdxtI1GEfXqO9xrM3M3xW8BAIAAGAxBEAAAACLIQA2AHa7XbNnz5bdbnd3KQ0eY+kajKNrMI6uw1i6BuPoGg1hHHkJBAAAwGKYAQQAALAYAiAAAIDFEAABAAAshgAIAABgMQTABuCvf/2rwsLC1LRpU/Xq1Uu7du1yd0k3lZ07d2rYsGEKDg6WzWZTampqpfOGYWjOnDkKDg6Wj4+P+vXrpyNHjlRq43A49Mwzz6h169Zq1qyZhg8fri+//NLET+F+iYmJuuuuu3TLLbcoICBAjz32mI4dO1apDWN5Y0uWLFGPHj2cC8D26dNHH3zwgfM8Y1g7iYmJstlsmjZtmvMYY1k9c+bMkc1mq7QFBgY6zzOO1ZeXl6exY8eqVatW8vX11c9+9jMdOHDAeb5BjaWBm9rq1asNLy8vY+nSpcbRo0eNqVOnGs2aNTPOnDnj7tJuGps3bzZmzZplrFu3zpBkrF+/vtL5+fPnG7fccouxbt06Izs72/j1r39tBAUFGSUlJc42EydONNq1a2ds27bNOHjwoBETE2P07NnTuHTpksmfxn0GDhxoJCUlGTk5OUZmZqYxZMgQo0OHDsb333/vbMNY3tiGDRuMTZs2GceOHTOOHTtmvPDCC4aXl5eRk5NjGAZjWBt79+41QkNDjR49ehhTp051Hmcsq2f27NlGRESEkZ+f79wKCwud5xnH6vn222+Njh07GnFxccann35qnDp1ykhLSzO++OILZ5uGNJYEwJvc3XffbUycOLHSsW7duhkzZ850U0U3t/8MgBUVFUZgYKAxf/5857GysjLD39/fePvttw3DMIyioiLDy8vLWL16tbNNXl6e0aRJE2PLli2m1X6zKSwsNCQZO3bsMAyDsayLW2+91Vi2bBljWAulpaVG586djW3bthnR0dHOAMhYVt/s2bONnj17VnmOcay+GTNmGPfff/81zze0seQr4JtYeXm5Dhw4oAEDBlQ6PmDAAO3evdtNVTUsp06dUkFBQaUxtNvtio6Odo7hgQMHdPHixUptgoODFRkZaelxLi4uliS1bNlSEmNZG5cvX9bq1av1ww8/qE+fPoxhLUyaNElDhgzRQw89VOk4Y1kzJ06cUHBwsMLCwjR69GidPHlSEuNYExs2bFDv3r01atQoBQQE6I477tDSpUud5xvaWBIAb2Lnz5/X5cuX1bZt20rH27Ztq4KCAjdV1bBcGafrjWFBQYG8vb116623XrON1RiGoWeffVb333+/IiMjJTGWNZGdna3mzZvLbrdr4sSJWr9+vW6//XbGsIZWr16tAwcOKDEx8apzjGX13XPPPVq1apW2bt2qpUuXqqCgQH379tU333zDONbAyZMntWTJEnXu3Flbt27VxIkTNWXKFK1atUpSw/sz6Wnq3VArNput0r5hGFcdw/XVZgytPM6TJ09WVlaWMjIyrjrHWN5Y165dlZmZqaKiIq1bt06xsbHasWOH8zxjeGNnz57V1KlT9eGHH6pp06bXbMdY3tigQYOc/xwVFaU+ffooPDxcK1eu1L333iuJcayOiooK9e7dW3/6058kSXfccYeOHDmiJUuWaPz48c52DWUsmQG8ibVu3VoeHh5X/a2gsLDwqr9hoGpX3nS73hgGBgaqvLxc33333TXbWMkzzzyjDRs2aPv27Wrfvr3zOGNZfd7e3rrtttvUu3dvJSYmqmfPnlq0aBFjWAMHDhxQYWGhevXqJU9PT3l6emrHjh1688035enp6RwLxrLmmjVrpqioKJ04cYI/kzUQFBSk22+/vdKx7t27Kzc3V1LD+28kAfAm5u3trV69emnbtm2Vjm/btk19+/Z1U1UNS1hYmAIDAyuNYXl5uXbs2OEcw169esnLy6tSm/z8fOXk5FhqnA3D0OTJk5WSkqJ//vOfCgsLq3Sesaw9wzDkcDgYwxro37+/srOzlZmZ6dx69+6t3/72t8rMzFSnTp0Yy1pyOBz67LPPFBQUxJ/JGrjvvvuuWhrr+PHj6tixo6QG+N9IU185QY1dWQZm+fLlxtGjR41p06YZzZo1M06fPu3u0m4apaWlxqFDh4xDhw4ZkoyFCxcahw4dci6VM3/+fMPf399ISUkxsrOzjTFjxlT5Wn779u2NtLQ04+DBg8aDDz5ouSUO/uu//svw9/c30tPTKy0X8eOPPzrbMJY3lpCQYOzcudM4deqUkZWVZbzwwgtGkyZNjA8//NAwDMawLv79LWDDYCyr6/e//72Rnp5unDx50vjkk0+MoUOHGrfccovz/yOMY/Xs3bvX8PT0NObNm2ecOHHC+Pvf/274+voaycnJzjYNaSwJgA3A4sWLjY4dOxre3t7GnXfe6VyWAz/Zvn27IemqLTY21jCMn17Nnz17thEYGGjY7XbjgQceMLKzsytd48KFC8bkyZONli1bGj4+PsbQoUON3NxcN3wa96lqDCUZSUlJzjaM5Y3Fx8c7/31t06aN0b9/f2f4MwzGsC7+MwAyltVzZS06Ly8vIzg42BgxYoRx5MgR53nGsfo2btxoREZGGna73ejWrZvxzjvvVDrfkMbSZhiGYe6cIwAAANyJZwABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIACbr16+fbDabbDabMjMzq9UnLi7O2Sc1NbVe6wPQ+BEAAcDFpk2bpscee+y6bZ588knl5+crMjKyWtdctGiR8vPzXVAdABAAAcDl9u3bp7vvvvu6bXx9fRUYGChPT89qXdPf31+BgYGuKA8ACIAA4CoXL16Ut7e3du/erVmzZslms+mee+6pdv+1a9cqKipKPj4+atWqlR566CH98MMP9VgxAKuq3l89AQA35OHhoYyMDN1zzz3KzMxU27Zt1bRp02r1zc/P15gxY7RgwQL94he/UGlpqXbt2iXDMOq5agBWRAAEABdp0qSJzp07p1atWqlnz5416pufn69Lly5pxIgR6tixoyQpKiqqPsoEAL4CBgBXOnToUI3DnyT17NlT/fv3V1RUlEaNGqWlS5fqu+++q4cKAYAACAAulZmZWasA6OHhoW3btumDDz7Q7bffrr/85S/q2rWrTp06VQ9VArA6AiAAuFB2drZ69OhRq742m0333Xef5s6dq0OHDsnb21vr1693cYUAwDOAAOBSFRUVysrK0rlz59SsWTP5+/tXq9+nn36qjz76SAMGDFBAQIA+/fRTff311+revXs9VwzAipgBBAAX+uMf/6g1a9aoXbt2euWVV6rdz8/PTzt37tTgwYPVpUsXvfjii/rzn/+sQYMG1WO1AKyKGUAAcKGxY8dq7NixNe7XvXt3bdmypR4qAoCrMQMIAG7w17/+Vc2bN1d2dna12k+cOFHNmzev56oAWIXNYJVRADBVXl6eLly4IEnq0KGDvL29b9insLBQJSUlkqSgoCA1a9asXmsE0LgRAAEAACyGr4ABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALAYAiAAAIDFEAABAAAshgAIAABgMQRAAAAAiyEAAgAAWAwBEAAAwGIIgAAAABZDAAQAALCY/wfK8VxqGCdOoQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAPoCAYAAABOHU+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACrA0lEQVR4nOzdeXxU1f3/8fdk3wcTEkIgQEBZA4iAiAuLC4qAqJUqAqLYWltUlLqAWgUKRv1Wq9aKiha1LlDXn0sFQQGxgCwSVlmEAAESwpaFkH3u748wAxECCbkzd5bX8/G4j0dz5y6fOaHw9px7zrUZhmEIAAAAASPI6gIAAADgWQRAAACAAEMABAAACDAEQAAAgABDAAQAAAgwBEAAAIAAQwAEAAAIMARAAACAAEMABAAACDAEQAAAgABDAAQAAAgwBEAAAIAAQwAEAAAIMARAAACAAEMABAAACDAEQAAAgABDAAQAAAgwBEAAAIAAQwAEAAAIMARAIAC89NJLstlsSk9Pt7oUl4ULF8pms2nhwoUeO3fSpEmy2Ww6cOBAve9ZWw0fffRRg6/lC/cF4F8IgEAA+Ne//iVJ2rBhg3788UeLq2m4Cy64QEuXLtUFF1xgdSkA4JMIgICfW7lypdasWaNBgwZJkt58802LK2q4uLg4XXTRRYqLi7O6FADwSQRAwM85A9/TTz+tiy++WLNmzdLRo0ddn9c2nLpjxw7ZbDa99dZbrn3bt2/XLbfcopSUFIWHh6tJkya64oorlJmZ6TqmrKxMf/7zn5WcnKyoqCj16dNHq1atUqtWrXT77befsd6VK1fquuuuU3x8vCIiItStWzf95z//qXFMbTX/+OOPGjJkiBISEhQREaE2bdro/vvvP+ke+/bt0/Dhw2W329WkSRONGTNGBQUFNY758MMP1atXL9ntdkVFRal169YaM2bMSdcqLS3V+PHjlZycrMjISPXt21erV68+q+8lSXv27NFdd92l1NRUhYWFKSUlRTfddJP27dtXa5sVFhbq6quvVpMmTbR8+XJJUnl5uaZOnar27dsrPDxciYmJuuOOO7R///4a57Zq1UqDBw/WnDlzdMEFFygyMlLt27d39RoD8E8hVhcAwH1KSkr0wQcfqGfPnkpPT9eYMWP0u9/9Th9++KFGjx5d7+tde+21qqqq0rPPPqsWLVrowIEDWrJkifLz813H3HHHHZo9e7YefvhhXX755dq4caNuuOEGFRYWnvH6CxYs0DXXXKNevXrp1Vdfld1u16xZs3TzzTfr6NGjpw2Qc+fO1ZAhQ9ShQwc9//zzatGihXbs2KFvvvnmpGN/85vf6Oabb9add96pdevWaeLEiZKOD5UvXbpUN998s26++WZNmjRJERER2rlzp7777ruTrvXoo4/qggsu0BtvvKGCggJNmjRJ/fr10+rVq9W6det6fa89e/aoZ8+eqqio0KOPPqouXbro4MGDmjt3rg4fPqwmTZqcdP/du3fr2muvVXl5uZYuXarWrVvL4XBo6NChWrx4sR5++GFdfPHF2rlzp5588kn169dPK1euVGRkpOsaa9as0Z///GdNmDBBTZo00RtvvKE777xT5557rvr06XPG3xsAH2QA8FvvvPOOIcl49dVXDcMwjKKiIiMmJsa47LLLXMcsWLDAkGQsWLCgxrlZWVmGJGPmzJmGYRjGgQMHDEnGCy+8UOv9NmzYYEgyHnnkkRr7P/jgA0OSMXr06NPet3379ka3bt2MioqKGucPHjzYaNq0qVFVVVXruW3atDHatGljlJSU1Frfk08+aUgynn322Rr7//SnPxkRERGGw+EwDMMw/va3vxmSjPz8/Fqv5azhggsucJ1nGIaxY8cOIzQ01Pjd735X7+81ZswYIzQ01Ni4ceMZ7/vhhx8aq1evNlJSUozLLrvMOHjwoOsYZ3t//PHHNc5dsWKFIcl45ZVXXPtatmxpREREGDt37nTtKykpMeLj440//OEPtdYBwLcxBAz4sTfffFORkZG65ZZbJEkxMTEaNmyYFi9erK1bt9brWvHx8WrTpo3+7//+T88//7xWr14th8NR45hFixZJkn7729/W2H/TTTcpJOT0Aw6//PKLNm3apBEjRkiSKisrXdu1116rnJwcbd68+ZTnbtmyRdu2bdOdd96piIiIM36X6667rsbPXbp0UWlpqfLy8iRJPXv2dH2P//znP9qzZ0+t17r11ltls9lcP7ds2VIXX3yxFixYUO/v9fXXX6t///7q0KHDGb/D3Llzddlll6lPnz6aN2+e4uPjXZ99+eWXatSokYYMGVLjfueff76Sk5NPGjo///zz1aJFC9fPERERatu2rXbu3HnGOgD4JgIg4Kd++eUXff/99xo0aJAMw1B+fr7y8/N10003SVK9n/Gy2Wz69ttvdfXVV+vZZ5/VBRdcoMTERN13330qKiqSJB08eFCSThqqDAkJUUJCwmmv73zG7cEHH1RoaGiN7U9/+pMk1bp8i/O5tubNm9fpu/y6lvDwcEnVQ+aS1KdPH3322WeqrKzUbbfdpubNmys9PV0ffPDBSddKTk4+5T5nW9Tne+3fv7/O3+Gzzz5TSUmJ/vjHP7rqd9q3b5/y8/MVFhZ20j1zc3NPasdT/W7Cw8Nd7QHA//AMIOCn/vWvf8kwDH300UenXDPu7bff1tSpU109ZmVlZTU+P1XYatmypWtSyZYtW/Sf//xHkyZNUnl5uV599VVXkNi3b5+aNWvmOq+ystIViGrTuHFjSdLEiRN14403nvKYdu3anXJ/YmKipOrn4cwydOhQDR06VGVlZVq2bJkyMjJ06623qlWrVurdu7fruNzc3JPOzc3NdbVFfb5XYmJinb/D3//+d82aNUsDBw7Up59+qgEDBrg+a9y4sRISEjRnzpxTnhsbG1unewDwXwRAwA9VVVXp7bffVps2bfTGG2+c9PmXX36p5557Tl9//bV69OghSVq7dq2uvvpq1zGff/75ae/Rtm1bPf744/r444/1008/SZJrwsDs2bNrrNH30UcfqbKy8rTXa9eunc477zytWbNGTz31VN2+6Am1tGnTRv/61780fvz4k3rEGiI8PFx9+/ZVo0aNNHfuXK1evbpGAPzggw80fvx41zDwzp07tWTJEt122231/l4DBw7Uv//9b23evLnWsOsUERGhTz/9VCNHjtR1112n2bNna+jQoZKkwYMHa9asWaqqqlKvXr0a8vUB+CkCIOCHvv76a+3du1fPPPOM+vXrd9Ln6enpevnll/Xmm29q8ODBuvLKK5WRkaFzzjlHLVu21LfffqtPPvmkxjlr167VPffco2HDhum8885TWFiYvvvuO61du1YTJkyQJHXq1EnDhw/Xc889p+DgYF1++eXasGGDnnvuOdntdgUFnf6pk9dee00DBw7U1Vdfrdtvv13NmjXToUOH9PPPP+unn37Shx9+WOu5//znPzVkyBBddNFFeuCBB9SiRQvt2rVLc+fO1XvvvVev9nviiSe0e/duXXHFFWrevLny8/P14osvKjQ0VH379q1xbF5enm644Qb9/ve/V0FBgZ588klFRES4ZhbX53tNmTJFX3/9tfr06aNHH31UnTt3Vn5+vubMmaPx48erffv2Ne4dGhqqDz74QL/73e9000036Z133tHw4cN1yy236L333tO1116rcePG6cILL1RoaKh2796tBQsWaOjQobrhhhvq1SYA/IzVs1AAmO/66683wsLCjLy8vFqPueWWW4yQkBAjNzfXyMnJMW666SYjPj7esNvtxsiRI42VK1fWmAW8b98+4/bbbzfat29vREdHGzExMUaXLl2Mv//970ZlZaXruqWlpcb48eONpKQkIyIiwrjooouMpUuXGna73XjggQdcx9U2+3jNmjXGb3/7WyMpKckIDQ01kpOTjcsvv9w1k/l05y5dutQYOHCgYbfbjfDwcKNNmzY17umcBbx///4a582cOdOQZGRlZRmGYRhffvmlMXDgQKNZs2ZGWFiYkZSUZFx77bXG4sWLT6rh3//+t3HfffcZiYmJRnh4uHHZZZcZK1euPKm96/K9DMMwsrOzjTFjxhjJyclGaGiokZKSYvz2t7819u3bV+O+H374oesch8Nh3HfffUZQUJAxY8YMwzAMo6Kiwvjb3/5mdO3a1YiIiDBiYmKM9u3bG3/4wx+MrVu3us5t2bKlMWjQoJPq7du3r9G3b9+T9gPwDzbDMAwL8yeAALBkyRJdcskleu+993TrrbdaXQ4ABDwCIABTzZs3T0uXLlX37t0VGRmpNWvW6Omnn5bdbtfatWvrtEwLAMC9eAYQgKni4uL0zTff6IUXXlBRUZEaN26sgQMHKiMjg/AHAF6CHkAAAIAAw0LQAAAAAYYACAAAEGAIgAAAAAGGAAgAABBgCIAAAAABhgAIAAAQYAiAAAAAAYYACAAAEGAC6k0gDodDe/fuVWxsrGw2m9XlAAAAnJFhGCoqKlJKSoqCgszpuwuoALh3716lpqZaXQYAAEC9ZWdnq3nz5qZcK6ACYGxsrKTqBoyLi7O4GgAAgDMrLCxUamqqK8eYIaACoHPYNy4ujgAIAAB8ipmPrzEJBAAAIMAQAAEAAAIMARAAACDAEAABAAACjM8EwMrKSj3++ONKS0tTZGSkWrdurSlTpsjhcFhdGgAAgE/xmVnAzzzzjF599VW9/fbb6tSpk1auXKk77rhDdrtd48aNs7o8AAAAn+EzAXDp0qUaOnSoBg0aJElq1aqVPvjgA61cudLiygAAAHyLzwTASy+9VK+++qq2bNmitm3bas2aNfrhhx/0wgsvWF2ai8NhaO6GXFOuZc5SPw2/iBl1mLVqkRnrH5lRiyltYkq7mtSyXvI79qffr2TO78dr/v/nRX9evaVNTPnz6iXfRWp4LQnR4WrVONqcYuARPhMAH3nkERUUFKh9+/YKDg5WVVWVpk2bpuHDh9d6TllZmcrKylw/FxYWurXGSoehP773k1vvAQCANxp/VVvdd8V5VpeBOvKZADh79my9++67ev/999WpUydlZmbq/vvvV0pKikaPHn3KczIyMjR58mSP1WizSRe2im/wdQwZDb9Gwy9hQhXVL7D2hjok72kTMwox53djwkXkRX9eveT3a8afebOY0yZe8vtt+CVM+92Y8/eAV1zClDZxGNKuQ0f1/LwtatskVtekJ5tQGdzNZnjT31ankZqaqgkTJmjs2LGufVOnTtW7776rTZs2nfKcU/UApqamqqCggFfBAQBgkmlfbdSMxVmKjw7Td3/uq0ZRYVaX5FcKCwtlt9tNzS8+swzM0aNHFRRUs9zg4ODTLgMTHh7ueu8v7/8FAMA9Hry6ndo2idGh4nK9snCb1eWgDnwmAA4ZMkTTpk3TV199pR07dujTTz/V888/rxtuuMHq0gAACGjhIcGaeG0HSdJbS3ZoX2GpxRXhTHwmAP7jH//QTTfdpD/96U/q0KGDHnzwQf3hD3/QX//6V6tLAwAg4PVrm6geLc9ReaVD/1660+pycAY+8wygGdwxhg4AAKp9vS5Hf3zvJ50TFaqlE69QRGiw1SX5hYB+BhAAAHi3qzo2UbNGkTp8tEJz1puzLi7cgwAIAABMERIcpJu6N5ckfbJ6j8XV4HQIgAAAwDQ3dGsmSfph637lMRnEaxEAAQCAaVo1jtYFLRrJYUifr9lrdTmoBQEQAACY6rquKZKkbzbss7gS1IYACAAATHVlxyaSpJU7D+lQcbnF1eBUCIAAAMBUzc+JUsemcXIY0rc/0wvojQiAAADAdAM6VfcCzttIAPRGBEAAAGC6KztUB8Affjmg8kqHxdXg1wiAAADAdB2bxikhOkxHy6u0etdhq8vBrxAAAQCA6YKCbLrk3MaSpP/9csDiavBrBEAAAOAWlx4LgIsJgF6HAAgAANzikvOqA+Ca7HwVllZYXA1ORAAEAABu0axRpFo3jpbDkJZuO2h1OTgBARAAALjNxecmSJJ+3H7I4kpwIgIgAABwm56t4iVVvxUE3oMACAAA3ObCtOoAuGFvoYrLKi2uBk4EQAAA4DZN7ZFq1ihSVQ5Dq3flW10OjiEAAgAAt3L2Aq7YwTCwt/CZANiqVSvZbLaTtrFjx1pdGgAAOI0erc6RRAD0JiFWF1BXK1asUFVVlevn9evX66qrrtKwYcMsrAoAAJyJcyLI6l35qqhyKDTYZ/qf/JbP/AYSExOVnJzs2r788ku1adNGffv2tbo0AABwGucmxqhRVKhKKqq0cW+h1eVAPhQAT1ReXq53331XY8aMkc1mq/W4srIyFRYW1tgAAIBnBQXZdH5qI0nSmt35ltaCaj4ZAD/77DPl5+fr9ttvP+1xGRkZstvtri01NdUzBQIAgBq6Nm8kScrMzre0DlTzyQD45ptvauDAgUpJSTntcRMnTlRBQYFry87O9lCFAADgRK4eQAKgV/CZSSBOO3fu1Pz58/XJJ5+c8djw8HCFh4d7oCoAAHA6XZrbJUnb9hersLRCcRGhFlcU2HyuB3DmzJlKSkrSoEGDrC4FAADUUUJMuFLjIyVJ63YXWFwNfCoAOhwOzZw5U6NHj1ZIiM91XgIAENB4DtB7+FQAnD9/vnbt2qUxY8ZYXQoAAKgn53OABEDr+VQ32oABA2QYhtVlAACAs9D1hABoGMZpl3KDe/lUDyAAAPBd6Sl2BQfZtL+oTLmFpVaXE9AIgAAAwCMiw4LVtkmsJGlNNhNBrEQABAAAHpOeEidJ2riXAGglAiAAAPCYTscC4AbeCWwpAiAAAPCYTs2qF4QmAFqLAAgAADymQ9M42WxSbmGpDhwps7qcgEUABAAAHhMTHqK0hGhJ9AJaiQAIAAA8qqPrOUAmgliFAAgAADwqnecALUcABAAAHuWaCbyHHkCrEAABAIBHdUqp7gHccfCoikorLK4mMBEAAQCAR8VHh6mpPUKS9HNOkcXVBCYCIAAA8DhnLyATQaxBAAQAAB7nfA5w/R4mgliBAAgAADzOGQB/ziEAWoEACAAAPK5D0+oA+EveEVVWOSyuJvAQAAEAgMc1axSp6LBglVc5lHWg2OpyAg4BEAAAeFxQkE3tkmMlST/nMhPY03wqAO7Zs0cjR45UQkKCoqKidP7552vVqlVWlwUAAM5C+2PDwJt4DtDjQqwuoK4OHz6sSy65RP3799fXX3+tpKQkbdu2TY0aNbK6NAAAcBY6HOsB3EQPoMf5TAB85plnlJqaqpkzZ7r2tWrVyrqCAABAgzh7ADcTAD3OZ4aAP//8c/Xo0UPDhg1TUlKSunXrphkzZpz2nLKyMhUWFtbYAACAd2jbpLoHcE9+iQpKeCWcJ/lMANy+fbumT5+u8847T3PnztXdd9+t++67T++8806t52RkZMhut7u21NRUD1YMAABOxx4ZqmaNIiXRC+hpNsMwDKuLqIuwsDD16NFDS5Ysce277777tGLFCi1duvSU55SVlamsrMz1c2FhoVJTU1VQUKC4uDi31wwAAE7vzrdW6NtNeZoytJNu693K6nK8UmFhoex2u6n5xWd6AJs2baqOHTvW2NehQwft2rWr1nPCw8MVFxdXYwMAAN6jfdNjS8Hk0APoST4TAC+55BJt3ry5xr4tW7aoZcuWFlUEAAAaqn2ycyIIz+l7ks8EwAceeEDLli3TU089pV9++UXvv/++Xn/9dY0dO9bq0gAAwFlqf2wpmM25RXI4fOKpNL/gMwGwZ8+e+vTTT/XBBx8oPT1df/3rX/XCCy9oxIgRVpcGAADOUlrjaIUFB6m4vEq7D5dYXU7A8Jl1ACVp8ODBGjx4sNVlAAAAk4QEB+m8JjHasLdQP+cWqkVClNUlBQSf6QEEAAD+6fhzgEwE8RQCIAAAsFR71yvhmAjiKQRAAABgKZaC8TwCIAAAsFS7Yz2AOw4Wq6S8yuJqAgMBEAAAWCoxJlzx0WEyDGlrHr2AnkAABAAAlrLZbGrXxPkcIAHQEwiAAADAcu1OWBAa7kcABAAAlmtPAPQoAiAAALBcu2SGgD2JAAgAACzX9tgzgAeOlOngkTKLq/F/BEAAAGC56PAQtYivfg0cw8DuRwAEAABegWFgzyEAAgAAr8BEEM8hAAIAAK/g6gHcRwB0NwIgAADwCs4ewK37iuRwGBZX498IgAAAwCu0SohWWEiQjpZXKfvwUavL8WsEQAAA4BVCgoN0bmKMJCaCuBsBEAAAeA3nMPAWAqBb+UwAnDRpkmw2W40tOTnZ6rIAAICJmAjiGSFWF1AfnTp10vz5810/BwcHW1gNAAAwWzuWgvEInwqAISEh9PoBAODH2ifHSZKyDhSrrLJK4SF09riDzwwBS9LWrVuVkpKitLQ03XLLLdq+fbvVJQEAABM1iQuXPTJUVQ5Dv+Qdsbocv+UzAbBXr1565513NHfuXM2YMUO5ubm6+OKLdfDgwVrPKSsrU2FhYY0NAAB4L5vNxjCwB/hMABw4cKB+85vfqHPnzrryyiv11VdfSZLefvvtWs/JyMiQ3W53bampqZ4qFwAAnCVeCed+PhMAfy06OlqdO3fW1q1baz1m4sSJKigocG3Z2dkerBAAAJwN10xgAqDb+NQkkBOVlZXp559/1mWXXVbrMeHh4QoPD/dgVQAAoKHoAXQ/n+kBfPDBB7Vo0SJlZWXpxx9/1E033aTCwkKNHj3a6tIAAICJ2japDoC5haUqOFphcTX+yWcC4O7duzV8+HC1a9dON954o8LCwrRs2TK1bNnS6tIAAICJYiNC1axRpCRpUy4TON3BZ4aAZ82aZXUJAADAQ9onx2pPfok27ytSr9YJVpfjd3ymBxAAAAQOJoK4FwEQAAB4HdYCdC8CIAAA8DrOV8JtyS2SYRgWV+N/CIAAAMDrtE6MVmiwTUVlldqTX2J1OX6HAAgAALxOaHCQ2iTGSGIY2B1MnQX8+eef1/ucq666SpGRkWaWAQAA/EC75Fhtyi3SptwiXdGhidXl+BVTA+D1119fr+NtNpu2bt2q1q1bm1kGAADwA0wEcR/Th4Bzc3PlcDjqtEVFRZl9ewAA4Cd4JZz7mBoAR48eXa/h3JEjRyouLs7MEgAAgJ9od2wm8Lb9R1Re6bC4Gv9i6hDwzJkz63X89OnTzbw9AADwIyn2CMVGhKiotFLbDxxxLQ2DhmMWMAAA8Eo2m03tmjAM7A5ufRdwaWmp1q5dq7y8PDkcNbtur7vuOnfeGgAA+IF2ybFaufOwNuUWaajVxfgRtwXAOXPm6LbbbtOBAwdO+sxms6mqqspdtwYAAH6CiSDu4bYh4HvuuUfDhg1TTk7OSbN/CX8AAKAunBNBCIDmclsAzMvL0/jx49WkCQs3AgCAs+N8BnBPfokKSyssrsZ/uC0A3nTTTVq4cKG7Lg8AAAKAPSpUTe0RkqQt9AKaxm3PAL788ssaNmyYFi9erM6dOys0NLTG5/fdd5+7bg0AAPxIu+RY5RSUalNukXq0ire6HL/gtgD4/vvva+7cuYqMjNTChQtls9lcn9lsNgIgAACok3bJsVq4eT/PAZrIbQHw8ccf15QpUzRhwgQFBbHcIAAAODvMBDaf25JZeXm5br75ZreFv4yMDNlsNt1///1uuT4AAPAO7ZpUzwTelFsowzAsrsY/uC0Ajh49WrNnz3bLtVesWKHXX39dXbp0ccv1AQCA92iTFK3gIJsKSyuVW1hqdTl+wW1DwFVVVXr22Wc1d+5cdenS5aRJIM8///xZXffIkSMaMWKEZsyYoalTp5pRKgAA8GLhIcFq3ThaW/OOaFNukZraI60uyee5LQCuW7dO3bp1kyStX7++xmcnTgipr7Fjx2rQoEG68sorzxgAy8rKVFZW5vq5sLDwrO8LAACs0y45VlvzjmhzbpH6t0uyuhyf57YAuGDBAtOvOWvWLK1atUorV66s0/EZGRmaPHmy6XUAAADPap8cqy/X5jARxCSmPgO4du1aORyOOh+/YcMGVVZW1unY7OxsjRs3Tu+9954iIiLqdM7EiRNVUFDg2rKzs+tcGwAA8B7OV8JtIgCawtQA2K1bNx08eLDOx/fu3Vu7du2q07GrVq1SXl6eunfvrpCQEIWEhGjRokV66aWXFBIScsr3C4eHhysuLq7GBgAAfI9zKZhteUdUUVX3ziacmqlDwIZh6C9/+YuioqLqdHx5eXmdr33FFVdo3bp1Nfbdcccdat++vR555BEFBwfXq1YAAOA7mjWKVHRYsIrLq7TjQLHOO/aOYJwdUwNgnz59tHnz5jof37t3b0VG1m0mT2xsrNLT02vsi46OVkJCwkn7AQCAfwkKsqltcqxW78rXptwiAmADmRoAFy5caOblAAAAXNofC4Cbc4s0pKvV1fg2t80C9gQCJwAAgaPdsV4/JoI0HC/pBQAAPqGt853A+1jXt6EIgAAAwCe0P7YUTPahEh0pq9sycjg1AiAAAPAJ8dFhSowNlyRt2ccwcEMQAAEAgM9wrgfIG0Eaxm2TQFasWKEJEyZo//79Ovfcc3X++ee7thYtWrjrtgAAwI+1axKrxVsPEAAbyG09gKNGjVJwcLDuvvtutW7dWosWLdIdd9yhVq1aKSEhwV23BQAAfqxdsnMmMBNBGsJtPYDZ2dn66quv1KZNmxr7d+7cqczMTHfdFgAA+DHnRJDNuUUyDEM2m83iinyT23oAL7nkEmVnZ5+0v2XLlho6dKi7bgsAAPzYeU1iFGSTDh+t0P6iMqvL8Vmm9gAOHTpUXbt2VdeuXXX33XdrypQp6ty5M0O+AADAFBGhwWqVEK3tB4q1KbdISXERVpfkk0wNgOedd56WLFmi6dOn6+DBg5Kkdu3aaejQoerdu7e6deumzp07KywszMzbAgCAANIuOVbbDxRrc26R+rRNtLocn2RqAPzb3/7m+t+7d+9WZmama3v66aeVlZWl4OBgtW/fXmvXrjXz1gAAIEC0S47V1+tzeSVcA7htEkjz5s3VvHlzDR482LXvyJEjWr16NeEPAACctfa8Eq7B3BYATyUmJkaXXXaZLrvsMk/eFgAA+JF2x2YCb913RFUOQ8FBzASuL94EAgAAfEqL+ChFhAaprNKhnQeLrS7HJxEAAQCATwkOsqltE14J1xAEQAAA4HPaHQuAPxMAzwoBEAAA+JyOKdXPAW7cy0SQs0EABAAAPie9mV2StH5PgcWV+CafCYDTp09Xly5dFBcXp7i4OPXu3Vtff/211WUBAAALdGwaJ5tNyi0s5ZVwZ8FnAmDz5s319NNPa+XKlVq5cqUuv/xyDR06VBs2bLC6NAAA4GHR4SFq3ThakrR+L72A9eUzAXDIkCG69tpr1bZtW7Vt21bTpk1TTEyMli1bZnVpAADAAq5h4N0EwPrymQB4oqqqKs2aNUvFxcXq3bt3rceVlZWpsLCwxgYAAPxDZ2cApAew3nwqAK5bt04xMTEKDw/X3XffrU8//VQdO3as9fiMjAzZ7XbXlpqa6sFqAQCAO3VKcU4EoYOnvnwqALZr106ZmZlatmyZ/vjHP2r06NHauHFjrcdPnDhRBQUFri07O9uD1QIAAHfq1Kx6KZg9+SU6VFxucTW+xaPvAm6osLAwnXvuuZKkHj16aMWKFXrxxRf12muvnfL48PBwhYeHe7JEAADgIXERoWqVEKUdB49q/Z4C9WmbaHVJPsOnegB/zTAMlZUx9RsAgECVznOAZ8VnegAfffRRDRw4UKmpqSoqKtKsWbO0cOFCzZkzx+rSAACARdKb2fXl2hwWhK4nnwmA+/bt06hRo5STkyO73a4uXbpozpw5uuqqq6wuDQAAWMQ1E5iJIPXiMwHwzTfftLoEAADgZTodeyfwrkNHVXC0QvaoUIsr8g0+/QwgAAAIbI2iwpQaHylJ2sBzgHVGAAQAAD4t/dh6gOt4DrDOCIAAAMCnOWcCEwDrjgAIAAB8Wpfm1QFwLe8ErjMCIAAA8GldmjeSVD0R5OAR1geuCwIgAADwafbIULVOjJYkrdmdb20xPoIACAAAfN75qY0kSZnZDAPXBQEQAAD4vOMBMN/SOnwFARAAAPg8ZwBck50vwzCsLcYHEAABAIDPa58cp7CQIBWUVGjHwaNWl+P1CIAAAMDnhYUEuV4Ll5l92OJqvB8BEAAA+AXXc4C78i2twxcQAAEAgF9wBUAWhD4jAiAAAPALzgD4895ClVVWWVuMlyMAAgAAv9AiPkrx0WEqr3Jo495Cq8vxagRAAADgF2w2m7oeey/wGtYDPC0CIAAA8Bvnp54jSVrFRJDTIgACAAC/0aPVsQC445DFlXg3nwmAGRkZ6tmzp2JjY5WUlKTrr79emzdvtrosAADgRc5PbaTgIJv2FpRqT36J1eV4LZ8JgIsWLdLYsWO1bNkyzZs3T5WVlRowYICKi4utLg0AAHiJ6PAQ14LQK+kFrFWI1QXU1Zw5c2r8PHPmTCUlJWnVqlXq06ePRVUBAABv073lOVq7u0ArdxzW0PObWV2OV/KZHsBfKyioXuQxPj7e4koAAIA36dmqOhus3Mkr4WrjMz2AJzIMQ+PHj9ell16q9PT0Wo8rKytTWVmZ6+fCQtYEAgDA3/VoWT0RZFNuoQpLKxQXEWpxRd7HJ3sA77nnHq1du1YffPDBaY/LyMiQ3W53bampqR6qEAAAWCUpLkIt4qNkGNJqloM5JZ8LgPfee68+//xzLViwQM2bNz/tsRMnTlRBQYFry87O9lCVAADASs7lYJgIcmo+EwANw9A999yjTz75RN99953S0tLOeE54eLji4uJqbAAAwP85nwNcQQA8JZ95BnDs2LF6//339f/+3/9TbGyscnNzJUl2u12RkZEWVwcAALxJz2M9gJnZ+aqocig02Gf6vDzCZ1pj+vTpKigoUL9+/dS0aVPXNnv2bKtLAwAAXqZ14xg1igpVaYVD6/YUWF2O1/GZHkDDMKwuAQAA+IigIJsubBWvbzbu07LtB3VBi3OsLsmr+EwPIAAAQH1c3CZBkrR020GLK/E+BEAAAOCXerdpLKl6Ikh5pcPiarwLARAAAPiltk1ilBAdptIKhzKz860ux6sQAAEAgF+y2Wy6iGHgUyIAAgAAv+V8DnDJtgMWV+JdCIAAAMBv9W5dHQBX78pXaUWVxdV4DwIgAADwW2mNo5UcF6HyKodW7TxsdTlegwAIAAD8ls1mU2+GgU9CAAQAAH7NGQB/+IWJIE4EQAAA4Nf6nJcoSVq7O1+HisstrsY7EAABAIBfS7ZHqH1yrAxDWrx1v9XleAUCIAAA8Ht921X3Ai7aTACUCIAAACAA9GubJEn6fut+ORyGxdVYjwAIAAD8XveW5yg6LFgHjpRrw95Cq8uxHAEQAAD4vbCQIF1ybmNJ0qIteRZXYz0CIAAACAjO5wAX8hwgARAAAASGvm2rA+BPuw4r/2hgLwdDAAQAAAGh+TlRap8cK4chfftzYA8DEwABAEDAGNCxiSTpm425FldiLZ8KgN9//72GDBmilJQU2Ww2ffbZZ1aXBAAAfMiATsmSpEVb9qukvMriaqzjUwGwuLhYXbt21csvv2x1KQAAwAd1SolTs0aRKq1wBPRbQUKsLqA+Bg4cqIEDB1pdBgAA8FE2m00DOjXRzP/t0NwN+1w9goHGp3oA66usrEyFhYU1NgAAENiuPhb6vt20T5VVDoursYZfB8CMjAzZ7XbXlpqaanVJAADAYj1anqP46DDlH63Qj1mHrC7HEn4dACdOnKiCggLXlp2dbXVJAADAYiHBQbq6U/Vs4M8z91pcjTX8OgCGh4crLi6uxgYAAHBd12aSpP+uz1FZZeDNBvbrAAgAAHAqF6bFKzkuQkWllQH5ajifCoBHjhxRZmamMjMzJUlZWVnKzMzUrl27rC0MAAD4lOAgm4Z0bSopMIeBfSoArly5Ut26dVO3bt0kSePHj1e3bt30xBNPWFwZAADwNUPPrx4Gnv/zPhWVVlhcjWf51DqA/fr1k2EYVpcBAAD8QKeUOLVJjNa2/cX6en2uftsjcFYL8akeQAAAALPYbDbdeEFzSdLsFYG1UohP9QC6m2EYqqysVFVV4M0GCmTBwcEKCQmRzWazuhQAgIcN69Fcf5+3Rat2Htbm3CK1S461uiSPIAAeU15erpycHB09etTqUmCBqKgoNW3aVGFhYVaXAgDwoKTYCF3ZoYnmbMjVB8t3adJ1nawuySMIgJIcDoeysrIUHByslJQUhYWF0RsUIAzDUHl5ufbv36+srCydd955CgriyQgACCTDe7XQnA25+uSn3ZowsL0iQoOtLsntCICq7v1zOBxKTU1VVFSU1eXAwyIjIxUaGqqdO3eqvLxcERERVpcEAPCgy85trGaNIrUnv0RfrNmrYQEwGYSujhPQ8xO4+N0DQOAKCrJpxEUtJElv/pAVECuO8K8eAAAIeCMubKmosGBtyi3S4q0HrC7H7QiA8LgdO3bIZrO53ujiKTabTZ999plH7wkA8A32qFDd3LN66HfG4u0WV+N+BEAf9uqrryo2NlaVlZWufUeOHFFoaKguu+yyGscuXrxYNptNW7ZsOeN1Fy5cKJvNpvz8fLNLBgDAa425JE1BNmnx1gNav6fA6nLcigDow/r3768jR45o5cqVrn2LFy9WcnKyVqxYUWNJm4ULFyolJUVt27b1WH3OdRUBAPAFqfFRGtwlRZL093ln7jDxZQRAH9auXTulpKRo4cKFrn0LFy7U0KFD1aZNGy1ZsqTG/v79+0uS3n33XfXo0UOxsbFKTk7Wrbfeqry8PEnVw7PO48455xzZbDbdfvvtkqoD3bPPPqvWrVsrMjJSXbt21UcffVTjHjabTXPnzlWPHj0UHh6uxYsX1+m7bNy4Uddee61iYmLUpEkTjRo1SgcOVD+D8dprr6lZs2ZyOBw1zrnuuus0evRo189ffPGFunfvroiICLVu3VqTJ08mgAIA6uX+K89TcJBN327K06qdh60ux20IgLUwDENHyyst2eoz+6hfv35asGCB6+cFCxaoX79+6tu3r2t/eXm5li5d6gp25eXl+utf/6o1a9bos88+U1ZWlivkpaam6uOPP5Ykbd68WTk5OXrxxRclSY8//rhmzpyp6dOna8OGDXrggQc0cuRILVq0qEZNDz/8sDIyMvTzzz+rS5cuZ/wOOTk56tu3r84//3ytXLlSc+bM0b59+/Tb3/5WkjRs2DAdOHCgxvc8fPiw5s6dqxEjRkiS5s6dq5EjR+q+++7Txo0b9dprr+mtt97StGnT6tyWAAC0TozRsO7Vr4f7v7mb/HZGMOsA1qKkokodn5hryb03TrlaUWF1+9X069dPDzzwgCorK1VSUqLVq1erT58+qqqq0ksvvSRJWrZsmUpKSlwBcMyYMa7zW7durZdeekkXXnihjhw5opiYGMXHx0uSkpKS1KhRI0lScXGxnn/+eX333Xfq3bu369wffvhBr732mvr27eu65pQpU3TVVVfV+ftOnz5dF1xwgZ566inXvn/9619KTU3Vli1b1LZtW11zzTV6//33dcUVV0iSPvzwQ8XHx7t+njZtmiZMmODqEWzdurX++te/6uGHH9aTTz5Z51oAALjvivP0yeo9Wrb9kOZuyNU16U2tLsl09AD6uP79+6u4uFgrVqzQ4sWL1bZtWyUlJalv375asWKFiouLtXDhQrVo0UKtW7eWJK1evVpDhw5Vy5YtFRsbq379+kmSdu3aVet9Nm7cqNLSUl111VWKiYlxbe+88462bdtW49gePXrU6zusWrVKCxYsqHHd9u3bS5Lr2iNGjNDHH3+ssrIySdJ7772nW265RcHBwa5rTJkypcY1fv/73/N6PwBAvaU0itQf+lT/mzn5i40qLvO/x4noAaxFZGiwNk652rJ719W5556r5s2ba8GCBTp8+LCrJy45OVlpaWn63//+pwULFujyyy+XVN2TN2DAAA0YMEDvvvuuEhMTtWvXLl199dUqLy+v9T7O5++++uorNWvWrMZn4eHhNX6Ojo6uc/3Oaw8ZMkTPPPPMSZ81bVr9X11DhgyRw+HQV199pZ49e2rx4sV6/vnna1xj8uTJuvHGG0+6Bm/2AADU19j+5+qzzD3KPlSiv8/boscHd7S6JFMRAGths9nqPAxrtf79+2vhwoU6fPiwHnroIdf+vn37au7cuVq2bJnuuOMOSdKmTZt04MABPf3000pNrV7v6MRZxJIUFhYmSaqqqnLt69ixo8LDw7Vr164aw71muOCCC/Txxx+rVatWCgk5dZtHRkbqxhtv1HvvvadffvlFbdu2Vffu3WtcY/PmzTr33HNNrQ0AEJgiQoM15bp03fHWCr35vyz1b5+kS85tbHVZpmEI2A/0799fP/zwgzIzM2uEs759+2rGjBkqLS11Pf/XokULhYWF6R//+Ie2b9+uzz//XH/9619rXK9ly5ay2Wz68ssvtX//fh05ckSxsbF68MEH9cADD+jtt9/Wtm3btHr1av3zn//U22+/3aD6x44dq0OHDmn48OFavny5tm/frm+++UZjxoypEUJHjBihr776Sv/61780cuTIGtd44okn9M4772jSpEnasGGDfv75Z82ePVuPP/54g2oDAASu/u2TdGuvFjIM6YHZmdpfVGZ1SaYhAPqB/v37q6SkROeee66aNGni2t+3b18VFRWpTZs2rt6+xMREvfXWW/rwww/VsWNHPf300/rb3/5W43rNmjXT5MmTNWHCBDVp0kT33HOPJOmvf/2rnnjiCWVkZKhDhw66+uqr9cUXXygtLa1B9aekpOh///ufqqqqdPXVVys9PV3jxo2T3W6v8Y7eyy+/XPHx8dq8ebNuvfXWGte4+uqr9eWXX2revHnq2bOnLrroIj3//PNq2bJlg2oDAAS2vwzqqPOSYpRXVKbfvb1CR8v943lAm+Fj85tfeeUV/d///Z9ycnLUqVMnvfDCCye99aI2hYWFstvtKigoUFxcnGt/aWmpsrKylJaWxvNiAYo/AwCA2mzff0Q3Tl+i/KMV6tM2Ua+N7K7IsLo/r99QteWXhvCpHsDZs2fr/vvv12OPPabVq1frsssu08CBA087exUAAKAhWifG6M3RPRQRGqTvt+zXrW8sU05BidVlNYhPBcDnn39ed955p373u9+pQ4cOeuGFF5Samqrp06dbXRoAAPBj3VvG673f9ZI9MlSrd+VrwN+/1xuLt/vskLDPBMDy8nKtWrVKAwYMqLF/wIABNV55dqKysjIVFhbW2AAAAM5G95bx+vRPF6traiMVlVZq6lc/q8fU+fr30h1Wl1ZvPhMADxw4oKqqqhqTHCSpSZMmys3NPeU5GRkZstvtrs05EQIAAOBstE6M0cd391bGjZ3VKiFKR8urlNIo0uqy6s03Fro7gc1mq/GzYRgn7XOaOHGixo8f7/q5sLCQEAgAABokJDhIwy9soVt6pmrN7gJ1bGrOxAxP8pkA2LhxYwUHB5/U25eXl3dSr6BTeHj4SW+pOB0fmxANE/G7BwDUl81m0/mpjawu46z4zBBwWFiYunfvrnnz5tXYP2/ePF188cUNunZoaKgk8c7YAOb83Tv/LAAA4M98pgdQksaPH69Ro0apR48e6t27t15//XXt2rVLd999d4OuGxwcrEaNGikvL0+SFBUVVeuwMvyLYRg6evSo8vLy1KhRIwUHe25dJwAArOJTAfDmm2/WwYMHNWXKFOXk5Cg9PV3//e9/TXnbQ3JysiS5QiACS6NGjVx/BgAA8Hc+9yaQhqjLStpVVVWqqKjwcGWwUmhoKD1/AACv5Y43gfhUD6AnBAcHEwYAAIBf85lJIAAAADAHARAAACDAEAABAAACTEA9A+ic78I7gQEAgK9w5hYz5+0GVAAsKiqSJF4HBwAAfE5RUZHsdrsp1wqoZWAcDof27t2r2NhYty307HzfcHZ2tmlTtf0R7VR3tFXd0E51R1vVDe1UN7RT3Z1tWxmGoaKiIqWkpCgoyJyn9wKqBzAoKEjNmzf3yL3i4uL4P0Id0E51R1vVDe1Ud7RV3dBOdUM71d3ZtJVZPX9OTAIBAAAIMARAAACAAEMANFl4eLiefPJJhYeHW12KV6Od6o62qhvaqe5oq7qhneqGdqo7b2qrgJoEAgAAAHoAAQAAAg4BEAAAIMAQAAEAAAIMAdBEr7zyitLS0hQREaHu3btr8eLFVpfkURkZGerZs6diY2OVlJSk66+/Xps3b65xjGEYmjRpklJSUhQZGal+/fppw4YNNY4pKyvTvffeq8aNGys6OlrXXXeddu/e7cmv4lEZGRmy2Wy6//77Xftop+P27NmjkSNHKiEhQVFRUTr//PO1atUq1+e0lVRZWanHH39caWlpioyMVOvWrTVlyhQ5HA7XMYHaTt9//72GDBmilJQU2Ww2ffbZZzU+N6tdDh8+rFGjRslut8tut2vUqFHKz89387czz+naqaKiQo888og6d+6s6OhopaSk6LbbbtPevXtrXCPQ2+nX/vCHP8hms+mFF16osd9r2smAKWbNmmWEhoYaM2bMMDZu3GiMGzfOiI6ONnbu3Gl1aR5z9dVXGzNnzjTWr19vZGZmGoMGDTJatGhhHDlyxHXM008/bcTGxhoff/yxsW7dOuPmm282mjZtahQWFrqOufvuu41mzZoZ8+bNM3766Sejf//+RteuXY3KykorvpZbLV++3GjVqpXRpUsXY9y4ca79tFO1Q4cOGS1btjRuv/1248cffzSysrKM+fPnG7/88ovrGNrKMKZOnWokJCQYX375pZGVlWV8+OGHRkxMjPHCCy+4jgnUdvrvf/9rPPbYY8bHH39sSDI+/fTTGp+b1S7XXHONkZ6ebixZssRYsmSJkZ6ebgwePNhTX7PBTtdO+fn5xpVXXmnMnj3b2LRpk7F06VKjV69eRvfu3WtcI9Db6USffvqp0bVrVyMlJcX4+9//XuMzb2knAqBJLrzwQuPuu++usa99+/bGhAkTLKrIenl5eYYkY9GiRYZhGIbD4TCSk5ONp59+2nVMaWmpYbfbjVdffdUwjOq/aEJDQ41Zs2a5jtmzZ48RFBRkzJkzx7NfwM2KioqM8847z5g3b57Rt29fVwCknY575JFHjEsvvbTWz2mraoMGDTLGjBlTY9+NN95ojBw50jAM2snp1/9gm9UuGzduNCQZy5Ytcx2zdOlSQ5KxadMmN38r850u2DgtX77ckOTq5KCdjtu9e7fRrFkzY/369UbLli1rBEBvaieGgE1QXl6uVatWacCAATX2DxgwQEuWLLGoKusVFBRIkuLj4yVJWVlZys3NrdFO4eHh6tu3r6udVq1apYqKihrHpKSkKD093e/acuzYsRo0aJCuvPLKGvtpp+M+//xz9ejRQ8OGDVNSUpK6deumGTNmuD6nrapdeuml+vbbb7VlyxZJ0po1a/TDDz/o2muvlUQ71casdlm6dKnsdrt69erlOuaiiy6S3W7327YrKCiQzWZTo0aNJNFOTg6HQ6NGjdJDDz2kTp06nfS5N7VTQL0L2F0OHDigqqoqNWnSpMb+Jk2aKDc316KqrGUYhsaPH69LL71U6enpkuRqi1O1086dO13HhIWF6ZxzzjnpGH9qy1mzZmnVqlVauXLlSZ/RTsdt375d06dP1/jx4/Xoo49q+fLluu+++xQeHq7bbruNtjrmkUceUUFBgdq3b6/g4GBVVVVp2rRpGj58uCT+TNXGrHbJzc1VUlLSSddPSkryy7YrLS3VhAkTdOutt7reZ0s7VXvmmWcUEhKi++6775Sfe1M7EQBNZLPZavxsGMZJ+wLFPffco7Vr1+qHH3446bOzaSd/asvs7GyNGzdO33zzjSIiImo9LtDbSar+r+kePXroqaeekiR169ZNGzZs0PTp03Xbbbe5jgv0tpo9e7beffddvf/+++rUqZMyMzN1//33KyUlRaNHj3YdF+jtVBsz2uVUx/tj21VUVOiWW26Rw+HQK6+8csbjA6mdVq1apRdffFE//fRTvb+PFe3EELAJGjdurODg4JOSeV5e3kn/ZRkI7r33Xn3++edasGCBmjdv7tqfnJwsSadtp+TkZJWXl+vw4cO1HuPrVq1apby8PHXv3l0hISEKCQnRokWL9NJLLykkJMT1PQO9nSSpadOm6tixY419HTp00K5duyTxZ8rpoYce0oQJE3TLLbeoc+fOGjVqlB544AFlZGRIop1qY1a7JCcna9++fSddf//+/X7VdhUVFfrtb3+rrKwszZs3z9X7J9FOkrR48WLl5eWpRYsWrr/bd+7cqT//+c9q1aqVJO9qJwKgCcLCwtS9e3fNmzevxv558+bp4osvtqgqzzMMQ/fcc48++eQTfffdd0pLS6vxeVpampKTk2u0U3l5uRYtWuRqp+7duys0NLTGMTk5OVq/fr3ftOUVV1yhdevWKTMz07X16NFDI0aMUGZmplq3bk07HXPJJZectJTQli1b1LJlS0n8mXI6evSogoJq/nUeHBzsWgaGdjo1s9qld+/eKigo0PLly13H/PjjjyooKPCbtnOGv61bt2r+/PlKSEio8TntJI0aNUpr166t8Xd7SkqKHnroIc2dO1eSl7WTadNJApxzGZg333zT2Lhxo3H//fcb0dHRxo4dO6wuzWP++Mc/Gna73Vi4cKGRk5Pj2o4ePeo65umnnzbsdrvxySefGOvWrTOGDx9+yiUXmjdvbsyfP9/46aefjMsvv9znl6I4kxNnARsG7eS0fPlyIyQkxJg2bZqxdetW47333jOioqKMd99913UMbWUYo0ePNpo1a+ZaBuaTTz4xGjdubDz88MOuYwK1nYqKiozVq1cbq1evNiQZzz//vLF69WrX7FWz2uWaa64xunTpYixdutRYunSp0blzZ59a3uR07VRRUWFcd911RvPmzY3MzMwaf7+XlZW5rhHo7XQqv54FbBje004EQBP985//NFq2bGmEhYUZF1xwgWv5k0Ah6ZTbzJkzXcc4HA7jySefNJKTk43w8HCjT58+xrp162pcp6SkxLjnnnuM+Ph4IzIy0hg8eLCxa9cuD38bz/p1AKSdjvviiy+M9PR0Izw83Gjfvr3x+uuv1/ictjKMwsJCY9y4cUaLFi2MiIgIo3Xr1sZjjz1W4x/nQG2nBQsWnPLvpdGjRxuGYV67HDx40BgxYoQRGxtrxMbGGiNGjDAOHz7soW/ZcKdrp6ysrFr/fl+wYIHrGoHeTqdyqgDoLe1kMwzDMK8/EQAAAN6OZwABAAACDAEQAAAgwBAAAQAAAgwBEAAAIMAQAAEAAAIMARAAACDAEAABAAACDAEQAAAgwBAAAQAAAgwBEADOUr9+/WSz2WSz2ZSZmVmnc26//XbXOZ999plb6wOA2hAAAaAW999/v66//vrTHvP73/9eOTk5Sk9Pr9M1X3zxReXk5JhQHQCcPQIgANRixYoVuvDCC097TFRUlJKTkxUSElKna9rtdiUnJ5tRHgCcNQIgAPxKRUWFwsLCtGTJEj322GOy2Wzq1atXnc//6KOP1LlzZ0VGRiohIUFXXnmliouL3VgxANRP3f6TFQACSHBwsH744Qf16tVLmZmZatKkiSIiIup0bk5OjoYPH65nn31WN9xwg4qKirR48WIZhuHmqgGg7giAAPArQUFB2rt3rxISEtS1a9d6nZuTk6PKykrdeOONatmypSSpc+fO7igTAM4aQ8AAcAqrV6+ud/iTpK5du+qKK65Q586dNWzYMM2YMUOHDx92Q4UAcPYIgABwCpmZmWcVAIODgzVv3jx9/fXX6tixo/7xj3+oXbt2ysrKckOVAHB2CIAAcArr1q1Tly5dzupcm82mSy65RJMnT9bq1asVFhamTz/91OQKAeDs8QwgAJyCw+HQ2rVrtXfvXkVHR8tut9fpvB9//FHffvutBgwYoKSkJP3444/av3+/OnTo4OaKAaDu6AEEgFOYOnWqZs+erWbNmmnKlCl1Pi8uLk7ff/+9rr32WrVt21aPP/64nnvuOQ0cONCN1QJA/dADCACnMHLkSI0cObLe53Xo0EFz5sxxQ0UAYB56AAGgAV555RXFxMRo3bp1dTr+7rvvVkxMjJurAoDTsxmsTgoAZ2XPnj0qKSmRJLVo0UJhYWFnPCcvL0+FhYWSpKZNmyo6OtqtNQLAqRAAAQAAAgxDwAAAAAGGAAgAABBgCIAAAAABhgAIAAAQYAiAAAAAAYYACAAAEGAIgAAAAAGGAAgAABBgCIAAAAABhgAIAAAQYAiAAAAAAYYACAAAEGAIgAAAAAGGAAgAABBgQqwuwJMcDof27t2r2NhY2Ww2q8sBAAA4I8MwVFRUpJSUFAUFmdN3F1ABcO/evUpNTbW6DAAAgHrLzs5W8+bNTblWQAXA2NhYSdUNGBcXZ3E1AAAAZ1ZYWKjU1FRXjjFDQAVA57BvXFwcARAAAPgUMx9fYxIIAABAgCEAAgAABBgCIAAAQIAJqGcA66KqqkoVFRVWlxHwwsLCTJvqDgAAaiIAHmMYhnJzc5Wfn291KZAUFBSktLQ0hYWFWV0KAAB+hwB4jDP8JSUlKSoqioWiLeRcsDsnJ0ctWrTgdwEAgMkIgKoe9nWGv4SEBKvLgaTExETt3btXlZWVCg0NtbocAAD8Cg9ZSa5n/qKioiyuBE7Ood+qqiqLKwEAwP/QA3gChhq9B78LAAhMq3Ye0hP/b4N2HChWv/ZJmnJdJyXEhFtdlt8hAAIAAK+wKbdQo95crqPl1aM/X63N0fb9xfro7t6KDieymIkhYNTJpEmT1KRJE9lsNn322We6/fbbdf3111tdFgDATxiGocc+Xa+j5VXq3TpB797ZS41jwvRzTqH+Pm+L1eX5HQKgn8jOztadd96plJQUhYWFqWXLlho3bpwOHjxY52vs2LFDNptNmZmZNfb//PPPmjx5sl577TXl5ORo4MCBJlcPAAh0i7ce0KqdhxUVFqznb+6qS89rrL8N6ypJmrlkh3YcKLa4Qv9CAPQD27dvV48ePbRlyxZ98MEH+uWXX/Tqq6/q22+/Ve/evXXo0KEGXX/btm2SpKFDhyo5OVnh4TyLAQAw1ztLd0iSftsjVU3tkZKkfu2S1K9doqochl5fvN3C6vwPAdAPjB07VmFhYfrmm2/Ut29ftWjRQgMHDtT8+fO1Z88ePfbYY5LkGr49UaNGjfTWW29JktLS0iRJ3bp1k81mU79+/TRp0iQNGTJEUvXizLVNzmjVqpVeeOGFGvvOP/98TZo0SZK0cOFChYWFafHixa7Pn3vuOTVu3Fg5OTkNbAEAgC87eKRM323KkySN6t2yxmd/6neuJOmjVbuVf7Tc47X5K56orIVhGCqpsGYJksjQ4DrPgj106JDmzp2radOmKTIyssZnycnJGjFihGbPnq1XXnnljNdavny5LrzwQs2fP1+dOnVSWFiYwsLC1KpVK91xxx0NCmr9+vXT/fffr1GjRmnNmjXasWOHHnvsMX3wwQdq2rTpWV8XAOD7vt2UJ4chdUqJU5vEmBqf9Wx1jtonx2pTbpG+WJujURe1rOUqqA8CYC1KKqrU8Ym5ltx745SrFRVWt1/N1q1bZRiGOnTocMrPO3TooMOHD2v//v1nvFZiYqIkKSEhQcnJya79jRo1kqQa+87G1KlTNX/+fN11113asGGDRo0apRtuuKFB1wQA+L5vNuyTJA3oePK/MzabTTd1b66pX/2sj1ZmEwBNwhCwnzMMQ5J3rKsXFhamd999Vx9//LFKSkpOGjIGAASeiiqH/vfLAUnSlR2TTnnM9d2aKTjIpjW7C5R96Kgny/Nb9ADWIjI0WBunXG3Zvevq3HPPlc1m08aNG0+5LMumTZt0zjnnqHHjxrLZbK5A6OR8C0pDBQUF1enaS5YskVQ9dH3o0CFFR0ebcn8AgG9av6dAJRVVahQVqg7Jcac8pnFMuHq2OkfLth/SNxv36c5L0zxcpf+hB7AWNptNUWEhlmz16a1LSEjQVVddpVdeeUUlJSU1PsvNzdV7772nm2++WTabTYmJiTWe49u6dauOHj3+X1INef3ar69dWFiorKysGsds27ZNDzzwgGbMmKGLLrpIt912mxwOR73vBQDwH8uzqleq6NkqXkFBtf/75xwe/mZDrkfq8ncEQD/w8ssvq6ysTFdffbW+//57ZWdna86cObrqqqvUrFkzTZs2TZJ0+eWX6+WXX9ZPP/2klStX6u6771ZoaKjrOklJSYqMjNScOXO0b98+FRQU1LmGyy+/XP/+97+1ePFirV+/XqNHj1Zw8PGezKqqKo0aNUoDBgzQHXfcoZkzZ2r9+vV67rnnzGsIAIDPWbGjOgD2Sos/7XFXdWziOv5QMbOBG4oA6AfOO+88rVy5Um3atNHNN9+sNm3a6K677lL//v21dOlSxcdX/5/queeeU2pqqvr06aNbb71VDz74oKKiolzXCQkJ0UsvvaTXXntNKSkpGjp0aJ1rmDhxovr06aPBgwfr2muv1fXXX682bdq4Pp82bZp27Nih119/XVL1hJI33nhDjz/++EkLTwMAAoNhGFq587Ck6h7A00mNj1L75Fg5DOmHY88M4uzZjF8/uOXHCgsLZbfbVVBQoLi4488ZlJaWKisrS2lpaYqIiLCwQjjxOwEA/5d96Kgue3aBQoNt2jD5GoWFnL5fauqXG/XGD1m6pWeqnv5NFw9Vab3a8ktD0AMIAAAssWFvoSSpbZPYM4Y/Sbrk3MaSpP9towewoQiAAADAEhv3Vj9r3rFp3Xq1LkyLV0iQTdmHSrTrIMvBNAQBEAAAWMLZA9gppW4BMDo8RN1aNJJEL2BDEQABAIAlXAGwmb3O51zcpnoYeOm2g26pKVAQAAEAgMcdLi5XbmGpJKlDHYeApeOzhVcdmz2Ms+MzAXDSpEmy2Ww1toa+m/bXWJTYewTQ5HQACEjb9h+RJDVrFKmY8Lq/mOz8Fo0UZJP25Jcot6DUXeX5PZ96FVynTp00f/58188nLjTcEGFhYQoKCtLevXuVmJiosLAwr3h3bqAyDEP79++XzWarsVA1AMB/bN9fLElqnVi/V4LGhIeoQ9M4bdhbqFU7D2tQl6buKM/v+VQADAkJMb3XT6p+j21aWppycnK0d+9e06+P+rPZbGrevLlpIR8A4F2cPYBtEmPqfW73ludow95Crdx5iAB4lnwqAG7dulUpKSkKDw9Xr1699NRTT6l169a1Hl9WVqaysjLXz4WFhbUeGxYWphYtWqiysvKs3oULc4WGhhL+AMCPbTvLHkCpOgC+s3QnzwE2gM8EwF69eumdd95R27ZttW/fPk2dOlUXX3yxNmzYoISEhFOek5GRocmTJ9f5Hs4hR4YdAQBwr+0N6AHscWwiyIa9hTpaXqmoMJ+JM17DZyaBDBw4UL/5zW/UuXNnXXnllfrqq68kSW+//Xat50ycOFEFBQWuLTs721PlAgCAWpRXOrTzUPVCzmfTA9isUaSS4yJU5TC0bneB2eUFBJ8JgL8WHR2tzp07a+vWrbUeEx4erri4uBobAACw1q5DR1XlMBQVFqzkuLN733vX1Oq1A9ftIQCeDZ8NgGVlZfr555/VtCkPfwIA4EuyDlQ//5fWOPqsV93o0ryRJGktPYBnxWcC4IMPPqhFixYpKytLP/74o2666SYVFhZq9OjRVpcGAADqIfvY8G/LhKizvkbnZvQANoTPPDW5e/duDR8+XAcOHFBiYqIuuugiLVu2TC1btrS6NAAAUA+7D5dIkpqf0/AAmHWgWAUlFbJHMoGzPnwmAM6aNcvqEgAAgAmyD1f3AKaeE3nW1zgnOkyp8ZHKPlSiDXsKdPG5jc0qLyD4zBAwAADwD84h4Ib0AEpSl2aNJElrGQauNwIgAADwGMMwtOfYEHBq/Nn3AEpS5+bHngNkIki9EQABAIDHFJRUqKisUpIZPYDVAXDtnvyGlhVwCIAAAMBjsg9V9/41jglXRGjDXvnZ6VgAzD5UosPF5Q2uLZAQAAEAgMfsdk4AaeDwryTZI0Nd1/k5p7DB1wskBEAAAOAxzhnADR3+deqQXP2Wr40EwHohAAIAAI9xrgHYkCVgTtShaXUA/DmnyJTrBQoCIAAA8Ji9+aWSpJRGZgdAegDrgwAIAAA8Zl9hdQBMjosw5XqdUqoD4C95R1RR5TDlmoGAAAgAADwmp+BYALSbEwCbnxOp2PAQlVc5tG3/EVOuGQgIgAAAwCMqqhw6WFwmybwAaLPZ1L5prCRp416GgeuKAAgAADwir6hMhiGFBtsUHxVm2nV5DrD+CIAAAMAjcguqZwAnxUYoKMhm2nWZCVx/BEAAAOARuQXVw79NTRr+dTqxB9AwDFOv7a8IgAAAwCNyj80AbmJyAGzXJFZBNulgcbn2F5WZem1/RQAEAAAe4RwCNmsJGKfIsGC1ahwtiTeC1BUBEAAAeERuoXuGgKXjr4TbnMtzgHVBAAQAAB7h7AFsYnIPoCS1bVK9FMyWfawFWBcEQAAA4BHOZwDd0QPYtkmMJGlrHj2AdUEABAAAbmcYhvYdmwXslh7A5OoewK37jsjhYCbwmRAAAQCA2+UfrVD5sXf1JsWFm379lvFRCgsOUklFlXYfLjH9+v6GAAgAANzuwJHq3j97ZKjCQ4JNv35IcJDaJFUPA2/exzDwmRAAAQCA2+0/FgAbx5j3Crhfcz4HuIUAeEYEQAAA4HbOBZobx5g//OvknAm8lQB4RgRAAADgdgeOlEuSEmPdHwA3sxTMGREAAQCA2x044v4ewHbHAuC2/UdUeWzCCU6NAAgAANzOOQTszh7A5udEKjI0WOWVDu08dNRt9/EHBEAAAOB2zh7ARDf2AAYF2XSec0FongM8LQIgAABwO9cQcKz7ZgFL0nlJvBKuLgiAAADA7Q4UVU8CceczgNLxpWBYC/D0CIAAAMCtHA7j+BCwG58BlE58JRwB8HQIgAAAwK0KSipUeez9vAnR7u4BrA6A2/cXq7ySmcC1IQACAAC3OvE1cGEh7o0eKfYIxYSHqNJhaMfBYrfey5cRAAEAgFvt99DwryTZbDbXO4F/yWMiSG18NgBmZGTIZrPp/vvvt7oUAABwGsdfA+feGcBO5yZWB8BtBMBa+WQAXLFihV5//XV16dLF6lIAAMAZOF8D5+4ZwE7nOnsA9xMAa+NzAfDIkSMaMWKEZsyYoXPOOcfqcgAAwBl44jVwJ2qTGC2JIeDT8bkAOHbsWA0aNEhXXnnlGY8tKytTYWFhjQ0AAHjWQQ8+Aygd7wHctv+IHMdmH6MmnwqAs2bN0qpVq5SRkVGn4zMyMmS3211bamqqmysEAAC/dqi4egg4PtozzwC2iI9SWHCQSisc2pNf4pF7+hqfCYDZ2dkaN26c3nvvPUVERNTpnIkTJ6qgoMC1ZWdnu7lKAADwa84AeE6UZwJgSHCQWjWOklTdC4iT+UwAXLVqlfLy8tS9e3eFhIQoJCREixYt0ksvvaSQkBBVVVWddE54eLji4uJqbAAAwLMOH62Q5LkeQElqk8hSMKcTYnUBdXXFFVdo3bp1Nfbdcccdat++vR555BEFBwdbVBkAADid40PAoR6754nPAeJkPhMAY2NjlZ6eXmNfdHS0EhISTtoPAAC8Q2WVQwUl1T2AnhoClk5YCoYewFPymSFgAADge/KPhT+brfpVcJ7iHALetp/XwZ2Kz/QAnsrChQutLgEAAJzG4WPDv/bIUIUEe67fyRkADxWX61BxuUefP/QF9AACAAC3cT3/58HhX0mKDAtWs0aRkhgGPhUCIAAAcJvDRz27BuCJeA6wdgRAAADgNoeKj00AIQB6FQIgAABwm0PF1a+B8/QQsMRSMKdDAAQAAG5jZQ8gi0HXjgAIAADc5vgzgJ5bAsbJ2QO4J79ER8srPX5/b0YABAAAbuPp9wCfKD46zDX5ZDvrAdZgyjqAn3/+eb3PueqqqxQZGWnG7QEAgJeychawJJ2bGKPlxYe0bf8RpTezW1KDNzIlAF5//fX1Ot5ms2nr1q1q3bq1GbcHAABeytUDaFEAbJMUreU7DvEc4K+YNgScm5srh8NRpy0qKsqs2wIAAC922KKFoJ2YCHJqpgTA0aNH12s4d+TIkYqLizPj1gAAwEuVVlSpuLxKknU9gKwFeGqmDAHPnDmzXsdPnz7djNsCAAAvln+0egmY4CCb4iJMiRz15uwB3HnwqCqrHB59H7E3M70VSkpKdPToUdfPO3fu1AsvvKBvvvnG7FsBAAAvduIMYJvNZkkNzRpFKjwkSOVVDu0+XGJJDd7I9AA4dOhQvfPOO5Kk/Px89erVS88995yGDh1Kzx8AAAHEGQCtWAPQKSjIprTG0ZKk7QcYBnYyPQD+9NNPuuyyyyRJH330kZo0aaKdO3fqnXfe0UsvvWT27QAAgJdyLgHTyKIJIE6tE48FQNYCdDE9AB49elSxsbGSpG+++UY33nijgoKCdNFFF2nnzp1m3w4AAHip/JJjr4GLsq4HUJJaN3a+E5gA6GR6ADz33HP12WefKTs7W3PnztWAAQMkSXl5ecz8BQAggBQeC4D2SIsDoKsHkCFgJ9MD4BNPPKEHH3xQrVq1Uq9evdS7d29J1b2B3bp1M/t2AADAS+V7zRBwdQ/g9gP0ADqZPif7pptu0qWXXqqcnBx17drVtf+KK67QDTfcYPbtAACAl3IuA+MtPYD7i8pUVFqh2Ahr6/EGpvUAPvroo1q+fLkkKTk5Wd26dVNQ0PHLX3jhhWrfvr1ZtwMAAF6uwEuGgOMiQpUYGy6JiSBOpgXAnJwcDR48WE2bNtVdd92lr776SmVlZWZdHgAA+BjnJJBGFk8CkaTWLAVTg2kBcObMmdq3b5/+85//qFGjRvrzn/+sxo0b68Ybb9Rbb72lAwcOmHUrAADgA7xlEoh0wnOA9ABKMnkSiM1m02WXXaZnn31WmzZt0vLly3XRRRdpxowZatasmfr06aO//e1v2rNnj5m3BQAAXsj5DGCjSGsngUhSG9YCrMGtL8Tr0KGDHn74Yf3vf//T7t27NXr0aC1evFgffPCBO28LAAC8QH6JcxawN/QAVgfAbSwFI8kNs4Brk5iYqDvvvFN33nmnp24JAAAsUlpRpdIKhyQpzhuGgI8tBr3jYLEcDkNBQda8m9hbNLgH8PDhwzp06JAkaf/+/fr444+1fv36BhcGAAB8l/P5vyCbFBvusf6mWjU/J1KhwTaVVji0t6DE6nIs16AA+MYbb6hHjx7q3r27pk+frhtuuEHffvutbrnlFr3++utm1QgAAHyMcwmYuMhQr+htCwkOUssEngN0alAk/8c//qENGzbo6NGjatGihbKyspSYmKjCwkL16dNHd911l1l1AgAAH+JaAsYLhn+dWjeO1i95R7R9/xH1aZtodTmWalAADA4OVkREhCIiInTuuecqMbG6MePi4mSzWZ/2AQCANVxvAbH4NXAnql4KZp+20QPYsCHgkJAQlZaWSpIWLVrk2l9UVNSwqgAAgE/zlreAnMg5E5jFoBsYAL/77juFh1e/WsVut7v2l5SU6M0332xYZQAAwGflHz22BIwXBUDWAjyuQUPAMTExp9wfFxenyspKffnll3I4HDU+u+666xpySwAA4AO86S0gTs6lYHIKSnW0vFJRYdbPTraK6d98zpw5uu2220756jebzaaqqiqzbwkAALyMN70H2Omc6DDFR4fpUHG5tu8vVnoz+5lP8lOmvwnknnvu0bBhw5STkyOHw1FjI/wBABAYXJNAvKgHUKqeCSxJ2w8E9jCw6QEwLy9P48ePV5MmTUy97vTp09WlSxfFxcUpLi5OvXv31tdff23qPQAAgDm8cRKIdMJEkAB/JZzpAfCmm27SwoULzb6smjdvrqefflorV67UypUrdfnll2vo0KHasGGD6fcCAAANc3wI2HuWgZGcS8EwEcT0ZwBffvllDRs2TIsXL1bnzp0VGloz+d93331ndd0hQ4bU+HnatGmaPn26li1bpk6dOp11vQAAwHzeOAlEOnEIOLB7AE0PgO+//77mzp2ryMhILVy4sMaC0Dab7awD4Imqqqr04Ycfqri4WL179671uLKyMpWVlbl+LiwsbPC9AQDAmbmWgfGiSSDS8R7ArP3FMgwjYF9cYXoAfPzxxzVlyhRNmDBBQUHmjjCvW7dOvXv3VmlpqWJiYvTpp5+qY8eOtR6fkZGhyZMnm1oDAAA4PYfDcD0D6E3rAEpSi/goBQfZVFxepX2FZUq2R1hdkiVMfwawvLxcN998s+nhT5LatWunzMxMLVu2TH/84x81evRobdy4sdbjJ06cqIKCAteWnZ1tek0AAKCmI+WVchjV/zvOywJgWEiQWsRHSQrsiSCmp7TRo0dr9uzZZl9WkhQWFqZzzz1XPXr0UEZGhrp27aoXX3yx1uPDw8Nds4adGwAAcK+CY0vARIQGKSI02OJqTuZ8DnBbAC8FY/oQcFVVlZ599lnNnTtXXbp0OWkSyPPPP2/avQzDqPGMHwAAsJ63LgHj1DoxWt9uCuweQNMD4Lp169StWzdJ0vr162t81pAHLR999FENHDhQqampKioq0qxZs7Rw4ULNmTOnQfUCAABzeX8AZCkY0wPgggULzL6kJGnfvn0aNWqUcnJyZLfb1aVLF82ZM0dXXXWVW+4HAADOjrcuAePkGgKmB9D7vfnmm1aXAAAA6qCwtDoAxkV4aQA81gO4J79EpRVVXvmcoruZMglk7dq1cjgcdT5+w4YNqqysNOPWAADAyxSWVP8bHxvhnf1MjWPCFBsRIsOQdhwMzGFgUwJgt27ddPDgwTof37t3b+3atcuMWwMAAC9T5OwB9NIhYJvNpjYB/hygKdHcMAz95S9/UVRUVJ2OLy8vN+O2AADACxWWVvcAeusQsFQ9EzgzOz9gZwKbEgD79OmjzZs31/n43r17KzIy0oxbAwAAL+OcBOKtQ8CS6AE04yILFy404zIAAMAPuHoAvXQIWJLSjs0E3h6gi0Gb/742AAAQ0Lx9FrBUPQQsVS8GbRiGxdV4HgEQAACYyheGgFslRMtmq+6tPFQceHMTCIAAAMBURT4wBBwRGqwUe/V8hKwAHAb2SADkfb0AAASO40PA3tsDKJ0wDEwAdI+LL774pH1btmzxxK0BAIAHORyGjpQ5F4L23h5A6YSJIAE4E9it0fzLL7/Upk2bVFxcrL179yolJcX12bBhw7RmzRp33h4AAHjYkfJKOedUePMzgNLxdwJnHQi8tQDd+pvp1KmTdu3apby8PA0fPlzZ2dlq3ry5UlJSFBwceO/dAwDA3zkngISHBHn9O3bTjq0FGIjPALo1AKalpelPf/qT0tPT1adPH0nSnj17lJWVpfT0dHfeGgAAWMD5HmBvngDi5OwB3HHwqKochoKDbBZX5Dke6Zt1hj9JatasmZo1a+aJ2wIAAA9zTgDx9uFfSUppFKmwkCCVVzq0N79EqfF1e6WtP/DIb+f2229Xenq6OnXqpPT0dKWmpnritgAAwMOKfOA9wE7BQTa1SojSln1HtP1AcUAFQI/MAr7rrrsUExOjL774Qr/5zW/UqFEj9e7d2xO3BgAAHuR8BtAXhoAlqXVj5zuBA2siiEd6AC+++OIaS8F8//33+vbbbz1xawAA4EG+NAQsSWmJzpnAgTURxCM9gAUFBTV+7tOnj7Zt2+aJWwMAAA/ypSFgKXDXAvTYJJDi4mK1bdtW6enpioiI0Nq1az1xawAA4EHHh4B9owewTYD2AHrkt7NmzRpVVVVp8+bNWr9+vQ4dOqTPP//cE7cGAAAedPw1cL7SA1j9DOCe/BKVVlR5/dqFZvFIAKysrNSsWbO0f/9+dezYUcOGDZPNFjhr7QAAECiODwH7Rg/gOVGhskeGqqCkQlkHitWhaZzVJXmER54BHD58uH744QfZbDZ99NFH6tatG+8CBgDAD7l6AH1kFrDNZlPrABwG9kg837x5c41n/n766SfdddddWrhwoSduDwAAPMT5JhBfmQUsVU8EWb0rP6ACoEd6AGNiYmrM+r3gggt06NAhT9waAAB4UJGPPQMoHX8l3LYAWgvQI/H8tdde0/XXX6+BAweqQ4cO+vnnn9WiRQtP3BoAAHhQYanvvAvYqXVi9UQQegAbYMuWLfrwww/16aefavv27ZKkzp07a+XKlerevbt27typNm3a6D//+Y/ZtwYAABYyDMO1DIyvDQFLgRUATfvtVFZW6o477tD7778vwzAkVT9Yeckll+ill17S+eefr5tvvtms2wEAAC9TWuFQpaM6A/jSELAzAOYfrdCh4nLFR4dZXJH7mdYDOG3aNP33v//VjBkztG3bNq1fv15vvfWWysvLddlll2n+/Plm3QoAAHgh5wzg4CCbosJ8Zz29iNBgNWsUKUnKOhAYzwGaFgD//e9/6+9//7vGjBmjtLQ0dezYUaNGjdKyZcs0adIk3XDDDcrNzVVBQYEWLFhg1m0BAICXcL0FJCLE59b7TXNNBAmMYWDTAmB2drYuu+yyU3725z//WbfccovuvPNOde/eXcuWLTPrtgAAwEs4J4DE+tDwr1OgrQVoWgCMj4/X4cOHa/38d7/7nb7++mtdeeWV+vOf/2zWbQEAgJc4vgi070wAcXJNBKEHsH769eund999t9bPmzRpopCQEL366qsKC/P/hysBAAg0x4eAfa8H0BkAt/MMYP088sgj+uc//1lrCFy5cqWaN29u1u0AAICXOT4E7Hs9gG2OrQW44+BRVR2byezPTAuA559/vqZPn67bb79dQ4cO1TfffKN9+/apoKBAn3/+uR544AGWgQEAwI/54ltAnFIaRSosOEjllQ7tzS+xuhy3M3Uh6DFjxujbb7/V7t27dc011yglJUXx8fG6/vrr1blzZz355JNnfe2MjAz17NlTsbGxSkpK0vXXX6/NmzebWD0AAGiI4+8B9r0AGBxkU8uEKEnS9gCYCGJ6H23fvn21atUqrV+/XpmZmSovL1eXLl3Uo0ePBl130aJFGjt2rHr27KnKyko99thjGjBggDZu3Kjo6GiTqgcAAGfrSJnvTgKRqmcCb807oqz9R9S3baLV5biV235D6enpSk9PN+16c+bMqfHzzJkzlZSUpFWrVqlPnz6m3QcAAJydomPPAMaE+2YATGscI2kfPYDerKCgQFL18jO1KSsrU1lZmevnwsJCt9cFAECgOuLDk0CkwFoL0NRnAD3FMAyNHz9el1566Wl7GTMyMmS3211bamqqB6sEACCwFJU5ewB97xlASWrtXAomANYC9MkAeM8992jt2rX64IMPTnvcxIkTVVBQ4Nqys7M9VCEAAIHH2QMY46M9gM61APcWlKi0osriatzL535D9957rz7//HN9//33Z1xXMDw8XOHh4R6qDACAwFZ0bBKIrw4Bx0eHyR4ZqoKSCu04WKz2yXFWl+Q2PtMDaBiG7rnnHn3yySf67rvvlJaWZnVJAADgBK5nAH10EojNZguYV8L5TAAcO3as3n33Xb3//vuKjY1Vbm6ucnNzVVLi/4s1AgDg7QzD0JEy3x4Clk54DtDPJ4L4TACcPn26CgoK1K9fPzVt2tS1zZ492+rSAAAIeGWVDlVUVb9CzVeXgZGOzwT294kgPvMbMgz/fy8fAAC+ytn7J0nRYT4TL05SvRaglHXgiMWVuJfP9AACAADvdeIi0EFBNourOXtpDAEDAADUja8vAu3kDID5Ryt0uLjc4mrchwAIAAAazLkEjC8//ydJkWHBSrFHSJK2+/EwMAEQAAA0mK8vAn2i1onVzwH680QQAiAAAGgw1xIwPt4DKB0fBvbndwITAAEAQIMV+ckzgNIJE0HoAQQAAKidswcwNjzU4koazrkWID2AAAAAp1HkT88AOtcCPFgsh8M/1yEmAAIAgAY74iezgCWp2TmRCgsOUnmlQ3vy/fOVswRAAADQYP6yDqAkBQfZ1DIhSpL/DgMTAAEAQIOd+CYQf+DvM4EJgAAAoMGKnJNAInx/Eoh04lqA/rkYNAEQAAA0mD8tBC1Jrf38ncAEQAAA0GD+tBC0JKUl+vdagARAAADQYK51AP2sB3BvQYlKK6osrsZ8BEAAANAghmGoqNR/loGRpPjoMMVFhMgwpJ0Hj1pdjukIgAAAoEHKKh2qqKpeMNlfegBtNpvS/HgiCAEQAAA0iHP4V5Kiw/wjAEpSGz+eCEIABAAADXLkhDUAg4JsFldjHn9eC5AACAAAGsTfFoF2Oj4TmCFgAACAGoqc7wH2k+f/nFo3rn4GkB5AAACAX/Gn9wCfqFXj6vcBHz5aocPF5RZXYy4CIAAAaBB/WwTaKSosRCn2CEn+NxGEAAgAABrE3xaBPpHzOUB/GwYmAAIAgAbx10kg0vGZwP42EYQACAAAGuR4AAy1uBLz+etEEAIgAABokCN+OgtYYggYAADglJyzgOP8MAC2PmExaIfDsLga8xAAAQBAg/jrLGBJan5OlEKDbSqrdGhvQYnV5ZiGAAgAABqk0PkMoB/2AAYH2dQywf+GgQmAAACgQY748Sxg6cSZwARAAAAASf69DqAktfbDiSAEQAAA0CDHA6D/LQMjHZ8I4k9vAyEAAgCABvH3IeDWidVrAfrTYtA+FQC///57DRkyRCkpKbLZbPrss8+sLgkAgIBWWlGl8iqHJP+cBCIdfwZwT36JSiuqLK7GHD4VAIuLi9W1a1e9/PLLVpcCAAB0fPhXkqLD/DMAJkSHKTYiRIYh7Tx41OpyTOFTv6mBAwdq4MCBVpcBAACOcQ7/RocFKzjIZnE17mGz2dQ6MUZrsvOVdeCI2iXHWl1Sg/lUAKyvsrIylZWVuX4uLCy0sBoAAPyPv08AcWrdOFprsvP9ZiKITw0B11dGRobsdrtrS01NtbokAAD8SpEfLwJ9In9bC9CvA+DEiRNVUFDg2rKzs60uCQAAv1JUWiHJf2cAO/nbWoB+/dsKDw9XeHi41WUAAOC3/H0RaCdnD6C/BEC/7gEEAADu5QyA/t4D6AyAh4rLlX+03OJqGs6nAuCRI0eUmZmpzMxMSVJWVpYyMzO1a9cuawsDACBAOZ8B9PcewKiwEDW1R0jyjzeC+FQAXLlypbp166Zu3bpJksaPH69u3brpiSeesLgyAAAC0/EeQP+eBSydMAzsBxNBfCqu9+vXT4ZhWF0GAAA4xjUJxM97AKXqiSBLth3U9gO+/0o4n+oBBAAA3sW5EHSsnz8DKElpjavfCewPE0EIgAAA4Ky5hoADoQfQj9YC9P/flgdVOQxNX/iL1WUAAOAxW/ZVD4f6+yQQqeZagA6HoSAffvWd//+2PKjKYehv32yxugwAADwuPjrM6hLcrlmjSIUG21RW6VBOYamaNYq0uqSzRgA0UZBNGn4hr5sDAASWFHukeqUlWF2G24UEB6lFfJS27S/W9v1HCICoFhIcpIwbu1hdBgAAcJPWiTHatr9YWQeKddl5iVaXc9aYBAIAAFBH/jIRhAAIAABQR86JIL7+NhACIAAAQB0dXwvQtxeDJgACAADUkfN1cLsPl6isssrias4eARAAAKCOGseEKTYiRIYh7Tx41OpyzhoBEAAAoI5sNptfTAQhAAIAANSDcxh4uw8/B0gABAAAqIfWiccmgtADCAAAEBicPYBZPrwUDAEQAACgHo4PARMAAQAAAoIzAB4qLlf+0XKLqzk7BEAAAIB6iA4PUXJchCTfHQYmAAIAANST65VwPjoRhAAIAABQT74+EYQACAAAUE8EQAAAgADT5thagNv2++Zi0ARAAACAenL2AO44WCyHw7C4mvojAAIAANRT83MiFRpsU2mFQzmFpVaXU28EQAAAgHoKCQ5Si/goSb75SjgCIAAAwFlIa3zsncAHfO85wBCrCwAAAPBFv+3RXH3aNlbvNo2tLqXeCIAAAABnYUCnZKtLOGsMAQMAAAQYAiAAAECAIQACAAAEGAIgAABAgCEAAgAABBgCIAAAQIAhAAIAAAQYAiAAAECACaiFoA3DkCQVFhZaXAkAAEDdOHOLM8eYIaACYFFRkSQpNTXV4koAAADqp6ioSHa73ZRr2Qwz46SXczgc2rt3r2JjY2Wz2dxyj8LCQqWmpio7O1txcXFuuYc/oJ3qjraqG9qp7miruqGd6oZ2qruzbSvDMFRUVKSUlBQFBZnz9F5A9QAGBQWpefPmHrlXXFwc/0eoA9qp7miruqGd6o62qhvaqW5op7o7m7Yyq+fPiUkgAAAAAYYACAAAEGAIgCYLDw/Xk08+qfDwcKtL8Wq0U93RVnVDO9UdbVU3tFPd0E51501tFVCTQAAAAEAPIAAAQMAhAAIAAAQYAiAAAECAIQACAAAEGAKgiV555RWlpaUpIiJC3bt31+LFi60uyaMyMjLUs2dPxcbGKikpSddff702b95c4xjDMDRp0iSlpKQoMjJS/fr104YNG2ocU1ZWpnvvvVeNGzdWdHS0rrvuOu3evduTX8WjMjIyZLPZdP/997v20U7H7dmzRyNHjlRCQoKioqJ0/vnna9WqVa7PaSupsrJSjz/+uNLS0hQZGanWrVtrypQpcjgcrmMCtZ2+//57DRkyRCkpKbLZbPrss89qfG5Wuxw+fFijRo2S3W6X3W7XqFGjlJ+f7+ZvZ57TtVNFRYUeeeQRde7cWdHR0UpJSdFtt92mvXv31rhGoLfTr/3hD3+QzWbTCy+8UGO/17STAVPMmjXLCA0NNWbMmGFs3LjRGDdunBEdHW3s3LnT6tI85uqrrzZmzpxprF+/3sjMzDQGDRpktGjRwjhy5IjrmKefftqIjY01Pv74Y2PdunXGzTffbDRt2tQoLCx0HXP33XcbzZo1M+bNm2f89NNPRv/+/Y2uXbsalZWVVnwtt1q+fLnRqlUro0uXLsa4ceNc+2mnaocOHTJatmxp3H777caPP/5oZGVlGfPnzzd++eUX1zG0lWFMnTrVSEhIML788ksjKyvL+PDDD42YmBjjhRdecB0TqO303//+13jssceMjz/+2JBkfPrppzU+N6tdrrnmGiM9Pd1YsmSJsWTJEiM9Pd0YPHiwp75mg52unfLz840rr7zSmD17trFp0yZj6dKlRq9evYzu3bvXuEagt9OJPv30U6Nr165GSkqK8fe//73GZ97STgRAk1x44YXG3XffXWNf+/btjQkTJlhUkfXy8vIMScaiRYsMwzAMh8NhJCcnG08//bTrmNLSUsNutxuvvvqqYRjVf9GEhoYas2bNch2zZ88eIygoyJgzZ45nv4CbFRUVGeedd54xb948o2/fvq4ASDsd98gjjxiXXnpprZ/TVtUGDRpkjBkzpsa+G2+80Rg5cqRhGLST06//wTarXTZu3GhIMpYtW+Y6ZunSpYYkY9OmTW7+VuY7XbBxWr58uSHJ1clBOx23e/duo1mzZsb69euNli1b1giA3tRODAGboLy8XKtWrdKAAQNq7B8wYICWLFliUVXWKygokCTFx8dLkrKyspSbm1ujncLDw9W3b19XO61atUoVFRU1jklJSVF6errfteXYsWM1aNAgXXnllTX2007Hff755+rRo4eGDRumpKQkdevWTTNmzHB9TltVu/TSS/Xtt99qy5YtkqQ1a9bohx9+0LXXXiuJdqqNWe2ydOlS2e129erVy3XMRRddJLvd7rdtV1BQIJvNpkaNGkminZwcDodGjRqlhx56SJ06dTrpc29qpxDTrhTADhw4oKqqKjVp0qTG/iZNmig3N9eiqqxlGIbGjx+vSy+9VOnp6ZLkaotTtdPOnTtdx4SFhemcc8456Rh/astZs2Zp1apVWrly5Umf0U7Hbd++XdOnT9f48eP16KOPavny5brvvvsUHh6u2267jbY65pFHHlFBQYHat2+v4OBgVVVVadq0aRo+fLgk/kzVxqx2yc3NVVJS0knXT0pK8su2Ky0t1YQJE3TrrbcqLi5OEu3k9MwzzygkJET33XffKT/3pnYiAJrIZrPV+NkwjJP2BYp77rlHa9eu1Q8//HDSZ2fTTv7UltnZ2Ro3bpy++eYbRURE1HpcoLeTVP1f0z169NBTTz0lSerWrZs2bNig6dOn67bbbnMdF+htNXv2bL377rt6//331alTJ2VmZur+++9XSkqKRo8e7Tou0NupNma0y6mO98e2q6io0C233CKHw6FXXnnljMcHUjutWrVKL774on766ad6fx8r2okhYBM0btxYwcHBJyXzvLy8k/7LMhDce++9+vzzz7VgwQI1b97ctT85OVmSTttOycnJKi8v1+HDh2s9xtetWrVKeXl56t69u0JCQhQSEqJFixbppZdeUkhIiOt7Bno7SVLTpk3VsWPHGvs6dOigXbt2SeLPlNNDDz2kCRMm6JZbblHnzp01atQoPfDAA8rIyJBEO9XGrHZJTk7Wvn37Trr+/v37/artKioq9Nvf/lZZWVmaN2+eq/dPop0kafHixcrLy1OLFi1cf7fv3LlTf/7zn9WqVStJ3tVOBEAThIWFqXv37po3b16N/fPmzdPFF19sUVWeZxiG7rnnHn3yySf67rvvlJaWVuPztLQ0JScn12in8vJyLVq0yNVO3bt3V2hoaI1jcnJytH79er9pyyuuuELr1q1TZmama+vRo4dGjBihzMxMtW7dmnY65pJLLjlpKaEtW7aoZcuWkvgz5XT06FEFBdX86zw4ONi1DAztdGpmtUvv3r1VUFCg5cuXu4758ccfVVBQ4Ddt5wx/W7du1fz585WQkFDjc9pJGjVqlNauXVvj7/aUlBQ99NBDmjt3riQvayfTppMEOOcyMG+++aaxceNG4/777zeio6ONHTt2WF2ax/zxj3807Ha7sXDhQiMnJ8e1HT161HXM008/bdjtduOTTz4x1q1bZwwfPvyUSy40b97cmD9/vvHTTz8Zl19+uc8vRXEmJ84CNgzayWn58uVGSEiIMW3aNGPr1q3Ge++9Z0RFRRnvvvuu6xjayjBGjx5tNGvWzLUMzCeffGI0btzYePjhh13HBGo7FRUVGatXrzZWr15tSDKef/55Y/Xq1a7Zq2a1yzXXXGN06dLFWLp0qbF06VKjc+fOPrW8yenaqaKiwrjuuuuM5s2bG5mZmTX+fi8rK3NdI9Db6VR+PQvYMLynnQiAJvrnP/9ptGzZ0ggLCzMuuOAC1/IngULSKbeZM2e6jnE4HMaTTz5pJCcnG+Hh4UafPn2MdevW1bhOSUmJcc899xjx8fFGZGSkMXjwYGPXrl0e/jae9esASDsd98UXXxjp6elGeHi40b59e+P111+v8TltZRiFhYXGuHHjjBYtWhgRERFG69atjccee6zGP86B2k4LFiw45d9Lo0ePNgzDvHY5ePCgMWLECCM2NtaIjY01RowYYRw+fNhD37LhTtdOWVlZtf79vmDBAtc1Ar2dTuVUAdBb2slmGIZhXn8iAAAAvB3PAAIAAAQYAiAAAECAIQACAAAEGAIgAABAgCEAAgAABBgCIAAAQIAhAAIAAAQYAiAAAECAIQACAAAEGAIgAJylfv36yWazyWazKTMzs07n3H777a5zPvvsM7fWBwC1IQACQC3uv/9+XX/99ac95ve//71ycnKUnp5ep2u++OKLysnJMaE6ADh7BEAAqMWKFSt04YUXnvaYqKgoJScnKyQkpE7XtNvtSk5ONqM8ADhrBEAA+JWKigqFhYVpyZIleuyxx2Sz2dSrV686n//RRx+pc+fOioyMVEJCgq688koVFxe7sWIAqJ+6/ScrAASQ4OBg/fDDD+rVq5cyMzPVpEkTRURE1OncnJwcDR8+XM8++6xuuOEGFRUVafHixTIMw81VA0DdEQAB4FeCgoK0d+9eJSQkqGvXrvU6NycnR5WVlbrxxhvVsmVLSVLnzp3dUSYAnDWGgAHgFFavXl3v8CdJXbt21RVXXKHOnTtr2LBhmjFjhg4fPuyGCgHg7BEAAeAUMjMzzyoABgcHa968efr666/VsWNH/eMf/1C7du2UlZXlhioB4OwQAAHgFNatW6cuXbqc1bk2m02XXHKJJk+erNWrVyssLEyffvqpyRUCwNnjGUAAOAWHw6G1a9dq7969io6Olt1ur9N5P/74o7799lsNGDBASUlJ+vHHH7V//3516NDBzRUDQN3RAwgApzB16lTNnj1bzZo105QpU+p8XlxcnL7//ntde+21atu2rR5//HE999xzGjhwoBurBYD6oQcQAE5h5MiRGjlyZL3P69Chg+bMmeOGigDAPPQAAkADvPLKK4qJidG6devqdPzdd9+tmJgYN1cFAKdnM1idFADOyp49e1RSUiJJatGihcLCws54Tl5engoLCyVJTZs2VXR0tFtrBIBTIQACAAAEGIaAAQAAAgwBEAAAIMAQAAEAAAIMARAAACDAEAABAAACDAEQAAAgwBAAAQAAAgwBEAAAIMAQAAEAAAIMARAAACDAEAABAAACDAEQAAAgwBAAAQAAAgwBEAAAIMCEWF2AJzkcDu3du1exsbGy2WxWlwMAAHBGhmGoqKhIKSkpCgoyp+8uoALg3r17lZqaanUZAAAA9Zadna3mzZubcq2ACoCxsbGSqhswLi7O4moAAADOrLCwUKmpqa4cY4aACoDOYd+4uDgCIAAA8ClmPr7mM5NAKisr9fjjjystLU2RkZFq3bq1pkyZIofDYXVpAAAAPsVnegCfeeYZvfrqq3r77bfVqVMnrVy5UnfccYfsdrvGjRtndXkAAAA+w2cC4NKlSzV06FANGjRIktSqVSt98MEHWrlypcWVAQAA+BafGQK+9NJL9e2332rLli2SpDVr1uiHH37QtddeW+s5ZWVlKiwsrLEBAAAEOp/pAXzkkUdUUFCg9u3bKzg4WFVVVZo2bZqGDx9e6zkZGRmaPHmyB6sEAADwfj7TAzh79my9++67ev/99/XTTz/p7bff1t/+9je9/fbbtZ4zceJEFRQUuLbs7GwPVgwAAOCdbIZhGFYXURepqamaMGGCxo4d69o3depUvfvuu9q0aVOdrlFYWCi73a6CggKWgQEAAD7BHfnFZ4aAjx49etLrT4KDg71qGZjKKofun51pdRkAAHhUs3Mi9eCAdgoN9pmBxYDnMwFwyJAhmjZtmlq0aKFOnTpp9erVev755zVmzBirS3NxGNKXa3OsLgMAAI/r1zZJvdskWF0G6shnAuA//vEP/eUvf9Gf/vQn5eXlKSUlRX/4wx/0xBNPWF2aS3CQTZOGdLS6DAAAPObVRduVW1iq8irvGZHDmfnMM4Bm4BlAAADMNeilxdqwt1Bvj7lQfdsmWl2OX3JHfmGwHgAAIMAQAAEAAAIMARAAACDAEAABAAACDAEQAAAgwBAAAQBAgwXQoiJ+gQAIAAAQYAiAAADgrNlsVleAs0EABAAACDAEQAAAgABDAAQAAAgwBEAAAIAAQwAEAAANxiIwvoUACAAAEGAIgAAA4KzZxDowvogACAAAEGAIgAAAAAGGAAgAABBgfCYAtmrVSjab7aRt7NixVpcGAADgU0KsLqCuVqxYoaqqKtfP69ev11VXXaVhw4ZZWBUAAIDv8ZkAmJiYWOPnp59+Wm3atFHfvn0tqggAALiwEKBP8Zkh4BOVl5fr3Xff1ZgxY2SzMf0cAACgPnymB/BEn332mfLz83X77bef9riysjKVlZW5fi4sLHRzZQAABBb6YXyTT/YAvvnmmxo4cKBSUlJOe1xGRobsdrtrS01N9VCFAAAA3svnAuDOnTs1f/58/e53vzvjsRMnTlRBQYFry87O9kCFAAAA3s3nhoBnzpyppKQkDRo06IzHhoeHKzw83ANVAQAA+A6f6gF0OByaOXOmRo8erZAQn8uuAAAAXsGnAuD8+fO1a9cujRkzxupSAAAAfJZPdaMNGDBAhsFCQwAAeBuDhQB9ik/1AAIAAKDhCIAAAOCssQygbyIAAgAABBgCIAAAQIAhAAIAAAQYAiAAAECAIQACAAAEGAIgAABoMJbp9S0EQAAAgABDAAQAAGfPxkqAvogACAAAEGAIgAAAAAGGAAgAABBgCIAAAAABhgAIAAAQYAiAAACgwVgH0LcQAAEAAAIMARAAAJw1VgH0TQRAAACAAONTAXDPnj0aOXKkEhISFBUVpfPPP1+rVq2yuiwAAACfEmJ1AXV1+PBhXXLJJerfv7++/vprJSUladu2bWrUqJHVpQEAAPgUnwmAzzzzjFJTUzVz5kzXvlatWllXEAAAgI/ymSHgzz//XD169NCwYcOUlJSkbt26acaMGVaXBQAAJLEKjG/xmQC4fft2TZ8+Xeedd57mzp2ru+++W/fdd5/eeeedWs8pKytTYWFhjQ0AACDQ+cwQsMPhUI8ePfTUU09Jkrp166YNGzZo+vTpuu222055TkZGhiZPnuzJMgEACCg21oHxST7TA9i0aVN17Nixxr4OHTpo165dtZ4zceJEFRQUuLbs7Gx3lwkAAOD1fKYH8JJLLtHmzZtr7NuyZYtatmxZ6znh4eEKDw93d2kAAAA+xWd6AB944AEtW7ZMTz31lH755Re9//77ev311zV27FirSwMAAPApPhMAe/bsqU8//VQffPCB0tPT9de//lUvvPCCRowYYXVpAAAAPsVnhoAlafDgwRo8eLDVZQAAAPg0n+kBBAAA3sswWAnQlxAAAQAAAgwBEAAAnDWWAfRNBEAAAIAAQwAEAAAIMARAAACAAEMABAAACDAEQAAAgADT4IWgP//883qfc9VVVykyMrKhtwYAAF6CVQB9S4MD4PXXX1+v4202m7Zu3arWrVs39NYAAAA4C6YMAefm5srhcNRpi4qKMuOWAADAC9hsrAToixocAEePHl2v4dyRI0cqLi6uobcFAADAWWrwEPDMmTPrdfz06dMbeksAAAA0ALOAAQAAAowpAfDHH3/U119/XWPfO++8o7S0NCUlJemuu+5SWVmZGbcCAABAA5kSACdNmqS1a9e6fl63bp3uvPNOXXnllZowYYK++OILZWRkmHErAAAANJApATAzM1NXXHGF6+dZs2apV69emjFjhsaPH6+XXnpJ//nPf8y4FQAA8EIGCwH6FFMC4OHDh9WkSRPXz4sWLdI111zj+rlnz57Kzs4241YAAABoIFMCYJMmTZSVlSVJKi8v108//aTevXu7Pi8qKlJoaKgZtwIAAF6EVQB9kykB8JprrtGECRO0ePFiTZw4UVFRUbrssstcn69du1Zt2rRp0D0mTZokm81WY0tOTm5o6QAAAAGnwesAStLUqVN14403qm/fvoqJidFbb72lsLAw1+f/+te/NGDAgAbfp1OnTpo/f77r5+Dg4AZfEwAAINCYEgALCgq0ePFiFRQUKCYm5qRg9uGHHyomJqbB9wkJCaHXDwAAoIFMGQJu27atUlNTde+99+rf//63duzYUePz+Pj4Gj2CZ2vr1q1KSUlRWlqabrnlFm3fvr3B1wQAAAg0pvQALlq0SIsWLdLChQs1duxYlZaWqkWLFrr88svVv39/9e/fX82aNWvQPXr16qV33nlHbdu21b59+zR16lRdfPHF2rBhgxISEk55TllZWY0FqAsLCxtUAwAAqA3rwPgSm2GYu3JPRUWFli5dqoULF2rhwoVatmyZysrKdO6552rz5s2m3ae4uFht2rTRww8/rPHjx5/ymEmTJmny5Mkn7S8oKFBcXJxptQAAEKhumr5EK3ce1qsjL9A16U2tLscvFRYWym63m5pfTH8XcGhoqPr06aOHHnpIEydO1J/+9CfFxMTol19+MfU+0dHR6ty5s7Zu3VrrMRMnTlRBQYFrYy1CAADMZWMdGJ9kyhCwJJWWlmrJkiVasGCBFi5cqBUrVigtLU19+/bV9OnT1bdvX7NuJal6ePfnn3+usdzMr4WHhys8PNzU+wIAAPg6UwJg3759tWLFCrVp00Z9+vTRvffeq759+9Z4O0hDPfjggxoyZIhatGihvLw8TZ06VYWFhRo9erRp9wAAAAgEpgTAJUuWqGnTpurfv7/69eunPn36qHHjxmZc2mX37t0aPny4Dhw4oMTERF100UVatmyZWrZsaep9AAAA/J0pATA/P1+LFy/WwoUL9cwzz2j48OFq27at+vbtq379+qlv375KTExs0D1mzZplRqkAAAABz5QAGB0drWuuuUbXXHONpOp3//7www9asGCBnn32WY0YMULnnXee1q9fb8btAAAA0ACmzwKWqgNhfHy84uPjdc455ygkJEQ///yzO24FAAC8gLmLysHdTOkBdDgcWrlypRYuXKgFCxbof//7n4qLi9WsWTP1799f//znP9W/f38zbgUAAIAGMiUANmrUSMXFxWratKn69eun559/Xv3791ebNm3MuDwAAPBSNrEQoC8yJQD+3//9n/r376+2bduacTkAAAC4kSkB8A9/+IMZlwEAAIAHmPYmEKfS0lKtXbtWeXl5cjgcNT677rrrzL4dAAAA6snUADhnzhzddtttOnDgwEmf2Ww2VVVVmXk7AAAAnAVTl4G55557NGzYMOXk5MjhcNTYCH8AAADewdQAmJeXp/Hjx5v6DmAAAOD9WAbQt5gaAG+66SYtXLjQzEsCAADAZKY+A/jyyy9r2LBhWrx4sTp37qzQ0NAan993331m3g4AAFiNZQB9kqkB8P3339fcuXMVGRmphQsXymY7/qfCZrMRAAEAALyAqQHw8ccf15QpUzRhwgQFBbnlNcMAAABoIFNTWnl5uW6++WbCHwAAgBczNamNHj1as2fPNvOSAAAAMJmpQ8BVVVV69tlnNXfuXHXp0uWkSSDPP/+8mbcDAADAWTA1AK5bt07dunWTJK1fv77GZydOCAEAAP7FYCFAn2JqAFywYIGZlwMAAIAbNPgZwLVr18rhcNT5+A0bNqiysrKht1VGRoZsNpvuv//+Bl8LAACcHcb3fFODA2C3bt108ODBOh/fu3dv7dq1q0H3XLFihV5//XV16dKlQdcBAAAIRA0eAjYMQ3/5y18UFRVVp+PLy8sbdL8jR45oxIgRmjFjhqZOndqgawEAAASiBgfAPn36aPPmzXU+vnfv3oqMjDzr+40dO1aDBg3SlVdeecYAWFZWprKyMtfPhYWFZ31fAAAAf9HgALhw4UITyqibWbNmadWqVVq5cmWdjs/IyNDkyZPdXBUAAIBv8ZlXdmRnZ2vcuHF67733FBERUadzJk6cqIKCAteWnZ3t5ioBAAC8n6nLwLjTqlWrlJeXp+7du7v2VVVV6fvvv9fLL7+ssrIyBQcH1zgnPDxc4eHhni4VAICAY4iFAH2JzwTAK664QuvWraux74477lD79u31yCOPnBT+AAAAcGo+EwBjY2OVnp5eY190dLQSEhJO2g8AADyDF335Jp95BhAAAADmcGsP4KFDh/TGG28oNDRUDzzwgOnX9+QMZAAAAH/h1h7Am266SdHR0XrjjTckSevXr9djjz3mzlsCAADgDNwaAIuKijR27FiFhYVJktLT0/Xf//7XnbcEAADAGbg1ACYlJWnv3r2ynfCEaGlpqTtvCQAALGCwCoxPceszgH//+981evRo5eXlafbs2ZozZ47at2/vzlsCAADgDNwaANu2bauvvvpKn332mdatW6cePXrojjvucOctAQCAB9nEOjC+yK0BcNOmTfriiy/UqFEjDRw4UOnp6YqKinLnLQEAAHAGbn0GcODAgSovL1d+fr5ee+019evXT+3atXPnLQEAAHAGbu0BTE5OPmnZl6qqKnfeEgAAAGfg1h7Aq6++Wv/+979r7OOdvQAAANZyaw/g8uXL9a9//UuTJ0/WhRdeqM6dO6tz584aPHiwO28LAACA03BrAHQu+lxYWKj169dr/fr1mj9/PgEQAAA/wzKAvsUtAfDFF1/UuHHjtHnzZp133nmKi4vTxRdfrIsvvtgdtwMAAEA9uCUApqenS5IeeOABbd26VbGxserUqZPS09OVnp6uQYMGueO2AADAw2wsA+iT3BIAr7jiCkmnHgKeN28eARAAAMBCbgmA48ePV5cuXdSlSxd16tSJIWAAAAAv4pYA2LdvX61du1ZfffWVNmzYoODgYHXq1MkVCpkEAvz/9u48LKqy/x/4e9iGfRQR2bdSQcANyFC/bqDiTl65pCJUZpaKaPmo2eNuWKZoC2RW8ru00jTlcUtD3HNDFEF9cguFBEITAVEW4f794cPJUdABZxiHeb+ua/4459zn3J/zYftwzrnvQ0REpD0aKQCHDBmCIUOGSMv37t3D2bNnkZ6ezlHARERERFqm0Wlgbt26hW+++QYmJiaIjo5GYGCgJrsjIiIiIhVo9E0gr776KiwsLLB69WoAwNmzZx97NRwRERHpPiE4E6Au0WgBWFxcjIkTJ8LExATAg+lhqkcG11V8fDzatm0La2trWFtbIygoCL/88os6wyUiIiLSCxotAO3s7JCTkwPZQ5MElZaW1utYzs7OWLJkCU6ePImTJ0+iV69eGDJkCM6dO6eucImIiKiOOA+gbtLoM4CxsbGIiIhAfn4+NmzYgF27dsHLy6texxo0aJDS8uLFixEfH49jx47Bx8dHHeESERER6QWNFoCtWrXCjh07kJiYiIyMDAQEBOD1119/5uNWVlZi48aNKCkpQVBQUK3tysrKUFZWJi0XFRU9c99EREREuk6jBWBGRgZWrFiBgoIC+Pn5YfDgwTA3N3+m4wUFBaG0tBSWlpbYsmUL2rRpU2v7mJgYzJ8/v979ERERETVGGh8F3L17d8yaNQuOjo4YPHgwkpOT63281q1bIy0tDceOHcM777yDiIgInD9/vtb2s2bNQmFhofTJzs6ud99EREREjYVGrwAqFAqMHTsWABAYGIihQ4ciJCQEZ86cqdfxTExM8OKLLwIAAgICkJKSgpUrV2LVqlU1tpfL5ZDL5fULnoiIiKiR0ugVQE9PTyxfvlyaG8jGxgampqZqO74QQukZPyIiIiJ6Oo0WgGVlZfjyyy/h6uqK0NBQ+Pr6Ijg4GNevX6/zsT744AMcOnQIV69eRUZGBmbPno39+/dj9OjRGoiciIiIqPHSyC3glStXYsqUKViyZAlatmyJe/fuIT09XfqMHDkSOTk5uHLlisrH/OuvvxAeHo7c3FwoFAq0bdsWu3btQu/evTVxCkRERKQCGTgRoC7SSAHo6+sLAJg6dSouX74MS0tL+Pj4wNfXF/3798eXX35Z52N+++236g6TiIiISC9ppAAMDg4GAOm1b0VFRTh79izOnj2LpKQkDBgwQBPdEhEREZEKNDoKuJq1tTU6d+6Mzp07N0R3RERERPQEGp8IOjY2Frdv34afnx/GjRsHFxcXTXZJRERERE+h8Ymge/ToobaJoImIiOj59L8Z30hH6NRE0ERERET07HR6ImgiIiLSLhlngdFJGi0AS0tL1TYRNBERERGph0ZuAVcXeImJiQCAkpKSZ54ImoiIiIjUQ60F4G+//YYxY8YgKysLAGBra4vIyEjMnj0bQUFBCAoKUmd3RERERFQPar0F/Pbbb8PHxwcpKSlIT0/H0qVLkZycDH9/f9y8eVOdXRERERFRPam1ALxy5QpiY2PRsWNH+Pj4YOzYsUhJSUH79u0RFRWlzq6IiIiIqJ7UWgB6e3sjLy9PaZ1MJsOCBQuwbds2dXZFREREzxEBTgSoS9RaAEZGRmL8+PHSM4DVCgsLoVAo1NkVEREREdWTWgeBREdHAwBatWqFoUOHon379qisrMS6deuwdOlSdXZFRERERPWk1gIwLy8Pp0+fxpkzZ5CWloaEhARcunQJMpkMS5YswY4dO9C2bVu0bdsWoaGh6uyaiIiIiFSk1gLQzs4Offv2Rd++faV1paWlyMjIQFpaGs6cOYOtW7fio48+wu3bt9XZNRERERGpSKPvAgYAU1NTBAYGIjAwUNNdEREREZEKNPoqOCIiIiJ6/rAAJCIiItIzOlMAxsTEIDAwEFZWVrCzs0NYWBguXLig7bCIiIgIgOA0gDpFZwrAAwcOYOLEiTh27BiSkpJw//599OnTByUlJdoOjYiIiEinaHwQiLrs2rVLaXnNmjWws7NDamoqunXrpqWoiIiI9JtMJtN2CFQPOlMAPqqwsBAAYGNjU2ubsrIylJWVSctFRUUaj4uIiIjoeaczt4AfJoTAtGnT0LVrV/j6+tbaLiYmBgqFQvq4uLg0YJREREREzyedLAAnTZqE9PR0/Pjjj09sN2vWLBQWFkqf7OzsBoqQiIiI6Pmlc7eAJ0+ejK1bt+LgwYNwdnZ+Ylu5XA65XN5AkRERERHpBp0pAIUQmDx5MrZs2YL9+/fDw8ND2yERERER6SSdKQAnTpyIH374Af/5z39gZWWFvLw8AIBCoYCZmZmWoyMiItJvnAdQt+jMM4Dx8fEoLCxEjx494ODgIH02bNig7dCIiIiIdIrOXAEU/NeCiIjoucNZAHWTzlwBJCIiIiL1YAFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERM+Mc3XoFhaARERERHqGBSARERHVm4wTAeokFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERE9MyE4EQwuoQFIBEREZGeYQFIRERE9cZZYHQTC0AiIiIiPcMCkIiIiEjPsAAkIiIi0jM6VQAePHgQgwYNgqOjI2QyGRITE7UdEhEREZHO0akCsKSkBO3atcMXX3yh7VCIiIiIdJaRtgOoi379+qFfv37aDoOIiIgewVkAdYtOXQEkIiIiomenU1cA66qsrAxlZWXSclFRkRajISIianxkMs4EqIsa9RXAmJgYKBQK6ePi4qLtkIiIiIi0rlEXgLNmzUJhYaH0yc7O1nZIRERERFrXqG8By+VyyOVybYdBRERE9FzRqQLwzp07uHz5srScmZmJtLQ02NjYwNXVVYuREREREekOnSoAT548iZ49e0rL06ZNAwBEREQgISFBS1ERERER6RadKgB79OgBITjTEBER0XOHf551SqMeBEJEREREj2MBSERERPXGWQB1k07dAm4IlZWVqKio0HYYRKRBxsbGMDQ01HYYRERawwLwf4QQyMvLw+3bt7UdChE1gCZNmsDe3p5vMSAivcQC8H+qiz87OzuYm5vzjwJRIyWEwN27d5Gfnw8AcHBw0HJEREQNjwUgHtz2rS7+mjVrpu1wiEjDzMzMAAD5+fmws7Pj7WAi0jscBAJIz/yZm5trORIiaijVP+985peI9BELwIfwti+R/uDPO5F6CU4EqFNYABIRERHpGRaAjdy8efPQvn17tR5z//79kMlk0ojphIQENGnSRK19ENWFTCZDYmKitsMg0ku8mK6bWADquMjISMhkMshkMhgbG8PT0xPvv/8+SkpKAADvv/8+kpOTNRrDiBEjcPHiRY32QarR10IoNzcX/fr103YYREQ6g6OAG4HQ0FCsWbMGFRUVOHToEMaNG4eSkhLEx8fD0tISlpaWGu3fzMxMGlX5vKmoqICxsbG2w1DCmNTfp729fYP1RUTUGPAKYCMgl8thb28PFxcXjBo1CqNHj5auAj16CzgyMhJhYWGYP38+7OzsYG1tjbfffhvl5eVSGyEEPvnkE3h6esLMzAzt2rXDpk2bau3/0VvA1X2uXbsW7u7uUCgUGDlyJIqLi+vdBwC4u7tj4cKFGDVqFCwtLeHo6IjPP/9cqY1MJsNXX32FIUOGwMLCAosWLQIAbNu2Df7+/jA1NYWnpyfmz5+P+/fvK8Xs6uoKuVwOR0dHREVFSdvi4uLQsmVLmJqaokWLFnj11VeVYlqxYoVSDO3bt8e8efOeOaZHpaSkoHfv3rC1tYVCoUD37t1x6tQppVgA4JVXXoFMJpOWH3X16lXIZDL89NNP6NGjB0xNTbFu3ToAwJo1a+Dt7Q1TU1N4eXkhLi5O2q+8vByTJk2Cg4MDTE1N4e7ujpiYGGl7YWEhxo8fL31f9erVC2fOnFHKcfv27fHdd9/B09MTcrkcq1atgpOTE6qqqpRiHDx4MCIiIqTl+Ph4vPDCCzAxMUHr1q2xdu1apfYPX/l80vkREdEDvAJYCyEE7lVUaqVvM2PDZxqhaGZm9sSpLZKTk2Fqaop9+/bh6tWreP3112Fra4vFixcDAD788ENs3rwZ8fHxaNmyJQ4ePIgxY8agefPm6N69u0oxXLlyBYmJidi+fTsKCgowfPhwLFmy5Jn7WLp0KT744APMmzcPu3fvxtSpU+Hl5YXevXtLbebOnYuYmBjExsbC0NAQu3fvxpgxY/DZZ5/h//7v/3DlyhWMHz9eartp0ybExsZi/fr18PHxQV5enlS4nDx5ElFRUVi7di06d+6MW7du4dChQyrl4GF1jakmxcXFiIiIwGeffQYAWLZsGfr3749Lly7BysoKKSkpsLOzw5o1axAaGvrUue1mzJiBZcuWYc2aNZDL5Vi9ejXmzp2LL774Ah06dMDp06fx1ltvwcLCQup369at+Omnn+Dq6ors7GxkZ2cDePDzMmDAANjY2GDnzp1QKBRYtWoVgoODcfHiRdjY2AAALl++jJ9++gk///wzDA0N4eTkhKioKOzbtw/BwcEAgIKCAuzevRvbtm0DAGzZsgVTpkzBihUrEBISgu3bt+P111+Hs7MzevbsqfL5ERHRP1gA1uJeRSXazNmtlb7PL+gLc5P6fWlOnDiBH374QfpjWhMTExN89913MDc3h4+PDxYsWIDp06dj4cKFuHfvHpYvX469e/ciKCgIAODp6YnDhw9j1apVKheAVVVVSEhIgJWVFQAgPDwcycnJWLx4MUpKSurdR5cuXTBz5kwAQKtWrfDbb78hNjZWqQAcNWoU3njjDWk5PDwcM2fOlK4oeXp6YuHChfjXv/6FuXPnIisrC/b29ggJCYGxsTFcXV3x0ksvAQCysrJgYWGBgQMHwsrKCm5ubujQoYNKOXhYXWOqSa9evZSWV61ahaZNm+LAgQMYOHAgmjdvDuCfV5w9TXR0NIYOHSotL1y4EMuWLZPWeXh44Pz581i1ahUiIiKQlZWFli1bomvXrpDJZHBzc5P23bdvHzIyMpCfny8VW59++ikSExOxadMmqbgtLy/H2rVrpViBB48wPPw9u3HjRtjY2EjLn376KSIjI/Huu+8CAKZNm4Zjx47h008/fWIB+Oj5EZFmCc4Co1NYADYC27dvh6WlJe7fv4+KigoMGTLksVujD2vXrp3SpNdBQUG4c+cOsrOzkZ+fj9LSUqWCCnjwh7suhY+7u7tU/AEPXrdV/eqt8+fP17uP6oLx4eVHb8EGBAQoLaempiIlJUW6+gg8ePtLaWkp7t69i2HDhmHFihXw9PREaGgo+vfvj0GDBsHIyAi9e/eGm5ubtC00NBSvvPJKnScNr2tMNR0/Pz8fc+bMwd69e/HXX3+hsrISd+/eRVZWVp1iqSmmGzduIDs7G2+++Sbeeustaf39+/ehUCgAPHh8oHfv3mjdujVCQ0MxcOBA9OnTRzqfO3fuPPYmnXv37uHKlSvSspubm1LxBwCjR4/G+PHjERcXB7lcju+//x4jR46UrmD+97//lQrIal26dMHKlStVPj8iIlLGArAWZsaGOL+gr9b6rouePXsiPj4exsbGcHR0rPfD7jKZTHoWa8eOHXByclLaXpfbaI/G8PCx1dXHw8d+mIWFhdJyVVUV5s+fX+PVIFNTU7i4uODChQtISkrCnj178O6772Lp0qU4cOAArKyscOrUKezfvx+//vor5syZg3nz5iElJQVNmjSBgYEBxCP/9tZ0+72uMdUkMjISN27cwIoVK+Dm5ga5XI6goCCl5zfr4uGYqr8mq1evRqdOnZTaVRdiHTt2RGZmJn755Rfs2bMHw4cPR0hICDZt2oSqqio4ODhg//79j/Xz8POhj+YBAAYNGoSqqirs2LEDgYGBOHToEJYvX67U5tGvsRDiqY9J1NQXEWkC54HRRSwAayGTyep9G7ahWVhY4MUXX1S5/ZkzZ3Dv3j1p5O6xY8dgaWkJZ2dnNG3aFHK5HFlZWSrf7q2rNm3a1LuPY8eOPbbs5eX1xH06duyICxcuPDFHZmZmGDx4MAYPHoyJEyfCy8sLGRkZ6NixI4yMjBASEoKQkBDMnTsXTZo0wd69ezF06FA0b94cubm50nGKioqQmZn51PNQJaZHHTp0CHFxcejfvz8AIDs7Gzdv3lRqY2xsjMrKuj+72qJFCzg5OeGPP/7A6NGja21nbW2NESNGYMSIEXj11VcRGhqKW7duoWPHjsjLy4ORkVGtg09qY2ZmhqFDh+L777/H5cuX0apVK/j7+0vbvb29cfjwYYwdO1Zad+TIEXh7e9f5PImI6AHdqHBIrcrLy/Hmm2/iww8/xLVr1zB37lxMmjQJBgYGsLKywvvvv4+pU6eiqqoKXbt2RVFREY4cOQJLS0ulkZn19Sx9/Pbbb/jkk08QFhaGpKQkbNy4ETt27Hhif3PmzMHAgQPh4uKCYcOGwcDAAOnp6cjIyMCiRYuQkJCAyspKdOrUCebm5li7di3MzMzg5uaG7du3448//kC3bt3QtGlT7Ny5E1VVVWjdujWAB8/lJSQkYNCgQWjatCn+/e9/P3XwhSox1eTFF1/E2rVrERAQgKKiIkyfPv2x6Xfc3d2RnJyMLl26QC6Xo2nTpk+Npdq8efMQFRUFa2tr9OvXD2VlZTh58iQKCgowbdo0xMbGwsHBAe3bt4eBgQE2btwIe3t7NGnSBCEhIQgKCkJYWBg+/vhjtG7dGjk5Odi5cyfCwsKeejt29OjRGDRoEM6dO4cxY8YobZs+fTqGDx+Ojh07Ijg4GNu2bcPmzZuxZ88elc+NiIiU6dw0MHFxcfDw8ICpqSn8/f3rNSJT3wUHB6Nly5bo1q0bhg8fjkGDBilNW7Jw4ULMmTMHMTEx8Pb2Rt++fbFt2zZ4eHioLYb69vHee+8hNTUVHTp0kAYt9O375Fv1ffv2xfbt25GUlITAwEC8/PLLWL58uTSIoUmTJli9ejW6dOmCtm3bIjk5Gdu2bUOzZs3QpEkTbN68Gb169YK3tze++uor/Pjjj/Dx8QEAzJo1C926dcPAgQPRv39/hIWF4YUXXnjq+T8tppp89913KCgoQIcOHRAeHo6oqCjY2dkptVm2bBmSkpLg4uJS58Eq48aNwzfffIOEhAT4+fmhe/fuSEhIkL4mlpaW+PjjjxEQEIDAwEBcvXoVO3fuhIGBAWQyGXbu3Ilu3brhjTfeQKtWrTBy5EhcvXoVLVq0eGrfvXr1go2NDS5cuIBRo0YpbQsLC8PKlSuxdOlS+Pj4YNWqVVizZg169OhRp/MjIqJ/yMSjDzA9xzZs2IDw8HDExcWhS5cuWLVqFb755hucP38erq6uT92/qKgICoUChYWFsLa2ltaXlpYiMzNTKiwbs8jISNy+fVsn3xbh7u6O6OhoREdHazsUagT06eeeSJPG/b+T2PPfv7BkqB9GvvT0v8VUd7XVL89Cp64ALl++HG+++SbGjRsHb29vrFixAi4uLoiPj9d2aEREREQ6Q2eeASwvL0dqaqo0B1y1Pn364MiRI1qKioiIiADgbE4hdp3N03YYWuHjaA0Xm7pND6ZtOlMA3rx5E5WVlY89T9SiRQvk5dX8DVdWVoaysjJpuaioSKMx6oKEhARth1BvV69e1XYIRET0CCODB9PArDuWhXXH6jcvqa7TxdvfOlMAVqvLfGAxMTGYP39+Q4RFRESkl8Z2dkPhvQpUVFY9vXEjZWupe6+b1JkC0NbWFoaGho9d7cvPz691lOGsWbMwbdo0abmoqAguLi4ajZOIiEifdH7BFp1fsNV2GFRHOjMIxMTEBP7+/khKSlJan5SUhM6dO9e4j1wuh7W1tdLnSarfhkBEjR9/3olIn+nMFUDgwUvgw8PDERAQgKCgIHz99dfIysrChAkTnum4JiYmMDAwQE5ODpo3bw4TE5OnvmaKiHSTEALl5eW4ceMGDAwMYGJiou2QiIganE4VgCNGjMDff/+NBQsWIDc3F76+vti5c+cTJ89VhYGBATw8PJCbm4ucnBw1RUtEzzNzc3O4urrCwEBnboQQEamNTk0E/ayeNpGiEAL379+v17tUiUh3GBoawsjIiFf6iUgnaGIiaJ26AqhpMpkMxsbGMDY21nYoRERERBrDex9EREREeoYFIBEREZGeYQFIREREpGf06hnA6vEufCUcERER6YrqukWd43b1qgAsLi4GAL4NhIiIiHROcXExFAqFWo6lV9PAVFVVIScnB1ZWVhqb/qH6dXPZ2dlqG6rdGDFPqmOuVMM8qY65Ug3zpBrmSXX1zZUQAsXFxXB0dFTb3KV6dQXQwMAAzs7ODdKXKq+eI+apLpgr1TBPqmOuVMM8qYZ5Ul19cqWuK3/VOAiEiIiISM+wACQiIiLSMywA1Uwul2Pu3LmQy+XaDuW5xjypjrlSDfOkOuZKNcyTapgn1T1PudKrQSBERERExCuARERERHqHBSARERGRnmEBSERERKRnWAASERER6RkWgGoUFxcHDw8PmJqawt/fH4cOHdJ2SA0qJiYGgYGBsLKygp2dHcLCwnDhwgWlNkIIzJs3D46OjjAzM0OPHj1w7tw5pTZlZWWYPHkybG1tYWFhgcGDB+PPP/9syFNpUDExMZDJZIiOjpbWMU//uH79OsaMGYNmzZrB3Nwc7du3R2pqqrSduQLu37+PDz/8EB4eHjAzM4OnpycWLFiAqqoqqY2+5ungwYMYNGgQHB0dIZPJkJiYqLRdXXkpKChAeHg4FAoFFAoFwsPDcfv2bQ2fnfo8KU8VFRWYMWMG/Pz8YGFhAUdHR4wdOxY5OTlKx9D3PD3q7bffhkwmw4oVK5TWPzd5EqQW69evF8bGxmL16tXi/PnzYsqUKcLCwkJcu3ZN26E1mL59+4o1a9aIs2fPirS0NDFgwADh6uoq7ty5I7VZsmSJsLKyEj///LPIyMgQI0aMEA4ODqKoqEhqM2HCBOHk5CSSkpLEqVOnRM+ePUW7du3E/fv3tXFaGnXixAnh7u4u2rZtK6ZMmSKtZ54euHXrlnBzcxORkZHi+PHjIjMzU+zZs0dcvnxZasNcCbFo0SLRrFkzsX37dpGZmSk2btwoLC0txYoVK6Q2+pqnnTt3itmzZ4uff/5ZABBbtmxR2q6uvISGhgpfX19x5MgRceTIEeHr6ysGDhzYUKf5zJ6Up9u3b4uQkBCxYcMG8fvvv4ujR4+KTp06CX9/f6Vj6HueHrZlyxbRrl074ejoKGJjY5W2PS95YgGoJi+99JKYMGGC0jovLy8xc+ZMLUWkffn5+QKAOHDggBBCiKqqKmFvby+WLFkitSktLRUKhUJ89dVXQogHv2iMjY3F+vXrpTbXr18XBgYGYteuXQ17AhpWXFwsWrZsKZKSkkT37t2lApB5+seMGTNE165da93OXD0wYMAA8cYbbyitGzp0qBgzZowQgnmq9ugfbHXl5fz58wKAOHbsmNTm6NGjAoD4/fffNXxW6vekwqbaiRMnBADpIgfz9I8///xTODk5ibNnzwo3NzelAvB5yhNvAatBeXk5UlNT0adPH6X1ffr0wZEjR7QUlfYVFhYCAGxsbAAAmZmZyMvLU8qTXC5H9+7dpTylpqaioqJCqY2joyN8fX0bXS4nTpyIAQMGICQkRGk98/SPrVu3IiAgAMOGDYOdnR06dOiA1atXS9uZqwe6du2K5ORkXLx4EQBw5swZHD58GP379wfAPNVGXXk5evQoFAoFOnXqJLV5+eWXoVAoGm3uCgsLIZPJ0KRJEwDMU7WqqiqEh4dj+vTp8PHxeWz785QnI7UdSY/dvHkTlZWVaNGihdL6Fi1aIC8vT0tRaZcQAtOmTUPXrl3h6+sLAFIuasrTtWvXpDYmJiZo2rTpY20aUy7Xr1+P1NRUnDx58rFtzNM//vjjD8THx2PatGn44IMPcOLECURFRUEul2Ps2LHM1f/MmDEDhYWF8PLygqGhISorK7F48WK89tprAPg9VRt15SUvLw92dnaPHd/Ozq5R5q60tBQzZ87EqFGjYG1tDYB5qvbxxx/DyMgIUVFRNW5/nvLEAlCNZDKZ0rIQ4rF1+mLSpElIT0/H4cOHH9tWnzw1plxmZ2djypQp+PXXX2FqalprO33PE/Dgv+mAgAB89NFHAIAOHTrg3LlziI+Px9ixY6V2+p6rDRs2YN26dfjhhx/g4+ODtLQ0REdHw9HREREREVI7fc9TbdSRl5raN8bcVVRUYOTIkaiqqkJcXNxT2+tTnlJTU7Fy5UqcOnWqzuejjTzxFrAa2NrawtDQ8LHKPD8//7H/LPXB5MmTsXXrVuzbtw/Ozs7Sent7ewB4Yp7s7e1RXl6OgoKCWtvoutTUVOTn58Pf3x9GRkYwMjLCgQMH8Nlnn8HIyEg6T33PEwA4ODigTZs2Suu8vb2RlZUFgN9T1aZPn46ZM2di5MiR8PPzQ3h4OKZOnYqYmBgAzFNt1JUXe3t7/PXXX48d/8aNG40qdxUVFRg+fDgyMzORlJQkXf0DmCcAOHToEPLz8+Hq6ir9br927Rree+89uLu7A3i+8sQCUA1MTEzg7++PpKQkpfVJSUno3LmzlqJqeEIITJo0CZs3b8bevXvh4eGhtN3DwwP29vZKeSovL8eBAwekPPn7+8PY2FipTW5uLs6ePdtochkcHIyMjAykpaVJn4CAAIwePRppaWnw9PRknv6nS5cuj00ldPHiRbi5uQHg91S1u3fvwsBA+de5oaGhNA0M81QzdeUlKCgIhYWFOHHihNTm+PHjKCwsbDS5qy7+Ll26hD179qBZs2ZK25knIDw8HOnp6Uq/2x0dHTF9+nTs3r0bwHOWJ7UNJ9Fz1dPAfPvtt+L8+fMiOjpaWFhYiKtXr2o7tAbzzjvvCIVCIfbv3y9yc3Olz927d6U2S5YsEQqFQmzevFlkZGSI1157rcYpF5ydncWePXvEqVOnRK9evXR+KoqneXgUsBDMU7UTJ04IIyMjsXjxYnHp0iXx/fffC3Nzc7Fu3TqpDXMlREREhHBycpKmgdm8ebOwtbUV//rXv6Q2+pqn4uJicfr0aXH69GkBQCxfvlycPn1aGr2qrryEhoaKtm3biqNHj4qjR48KPz8/nZre5El5qqioEIMHDxbOzs4iLS1N6fd7WVmZdAx9z1NNHh0FLMTzkycWgGr05ZdfCjc3N2FiYiI6duwoTX+iLwDU+FmzZo3UpqqqSsydO1fY29sLuVwuunXrJjIyMpSOc+/ePTFp0iRhY2MjzMzMxMCBA0VWVlYDn03DerQAZJ7+sW3bNuHr6yvkcrnw8vISX3/9tdJ25kqIoqIiMWXKFOHq6ipMTU2Fp6enmD17ttIfZ33N0759+2r8vRQRESGEUF9e/v77bzF69GhhZWUlrKysxOjRo0VBQUEDneWze1KeMjMza/39vm/fPukY+p6nmtRUAD4veZIJIYT6ricSERER0fOOzwASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARET11KNHD8hkMshkMqSlpam0T2RkpLRPYmKiRuMjIqoNC0AiolpER0cjLCzsiW3eeust5ObmwtfXV6Vjrly5Erm5uWqIjoio/lgAEhHVIiUlBS+99NIT25ibm8Pe3h5GRkYqHVOhUMDe3l4d4RER1RsLQCKiR1RUVMDExARHjhzB7NmzIZPJ0KlTJ5X337RpE/z8/GBmZoZmzZohJCQEJSUlGoyYiKhuVPuXlYhIjxgaGuLw4cPo1KkT0tLS0KJFC5iamqq0b25uLl577TV88skneOWVV1BcXIxDhw5BCKHhqImIVMcCkIjoEQYGBsjJyUGzZs3Qrl27Ou2bm5uL+/fvY+jQoXBzcwMA+Pn5aSJMIqJ64y1gIqIanD59us7FHwC0a9cOwcHB8PPzw7Bhw7B69WoUFBRoIEIiovpjAUhEVIO0tLR6FYCGhoZISkrCL7/8gjZt2uDzzz9H69atkZmZqYEoiYjqhwUgEVENMjIy0LZt23rtK5PJ0KVLF8yfPx+nT5+GiYkJtmzZouYIiYjqj88AEhHVoKqqCunp6cjJyYGFhQUUCoVK+x0/fhzJycno06cP7OzscPz4cdy4cQPe3t4ajpiISHW8AkhEVINFixZhw4YNcHJywoIFC1Tez9raGgcPHkT//v3RqlUrfPjhh1i2bBn69eunwWiJiOqGVwCJiGowZswYjBkzps77eXt7Y9euXRqIiIhIfXgFkIjoGcTFxcHS0hIZGRkqtZ8wYQIsLS01HBUR0ZPJBGcnJSKql+vXr+PevXsAAFdXV5iYmDx1n/z8fBQVFQEAHBwcYGFhodEYiYhqwgKQiIiISM/wFjARERGRnmEBSERERKRnWAASERER6RkWgERERER6hgUgERERkZ5hAUhERESkZ1gAEhEREekZFoBEREREeoYFIBEREZGeYQFIREREpGdYABIRERHpGRaARERERHqGBSARERGRnmEBSERERKRnWAASERER6Zn/D2uWcoTA/WBoAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", - " \n", + " \n", "
\n", " " ], @@ -218,17 +217,17 @@ "fig1.set_figheight(10)\n", "fig1.suptitle('Ausgleichsbecken')\n", "\n", - "ax1.plot(t_vec,level_vec, label='Water level')\n", + "ax1.plot(t_vec[:i],level_vec[:i], label='Water level')\n", "ax1.set_ylabel(r'$h$ ['+reservoir.level_unit+']')\n", "ax1.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n", "ax1.legend()\n", "\n", - "ax2.plot(t_vec,outflux_vec, label='Outflux')\n", + "ax2.plot(t_vec[:i],outflux_vec[:i], label='Outflux')\n", "ax2.set_ylabel(r'$Q_{out}$ ['+reservoir.flux_unit+']')\n", "ax2.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n", "ax2.legend()\n", "\n", - "ax3.plot(t_vec,pressure_conversion(pressure_vec,'Pa',pUnit_conv), label='Pipeline pressure at reservoir')\n", + "ax3.plot(t_vec[:i],pressure_conversion(pressure_vec[:i],'Pa',pUnit_conv), label='Pipeline pressure at reservoir')\n", "ax3.set_ylabel(r'$p_{pipeline}$ ['+pUnit_conv+']')\n", "ax3.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n", "ax3.legend()\n",