Clean up before combining pipeline and
reservoir code
This commit is contained in:
@@ -1,31 +1,5 @@
|
||||
import numpy as np
|
||||
|
||||
def Volume_trend(influx, outflux, timestep=1, V_0=0):
|
||||
'''
|
||||
Returns the trend and the volume and the final volume, defined
|
||||
by influx and outflux patterns. The optional parameter timestep
|
||||
defines the time increment over which the fluxes are changing.
|
||||
'''
|
||||
net_flux = influx-outflux
|
||||
delta_V = net_flux*timestep
|
||||
V_trend = V_0+np.cumsum(delta_V)
|
||||
V_end = V_trend[-1]
|
||||
return V_end, V_trend
|
||||
|
||||
def Height_trend(V_trend, area=1, h_crit_low=-np.inf, h_crit_high=np.inf):
|
||||
'''
|
||||
Returns the trend and the height and the final height, defined
|
||||
by influx and outflux patterns as well as the crosssection area.
|
||||
The optional parameters h_crit_low/high indicate limits that the height
|
||||
should never exceed. If this occures, TRUE is returned in the corresponding
|
||||
h_crit_flag.
|
||||
'''
|
||||
h_trend = V_trend/area
|
||||
h_crit_flag_low = np.any(h_trend <= h_crit_low)
|
||||
h_crit_flag_high = np.any(h_trend >= h_crit_high)
|
||||
h_end = h_trend[-1]
|
||||
return h_trend, h_end, h_crit_flag_low, h_crit_flag_high
|
||||
|
||||
def get_h_halfstep(initial_height, influx, outflux, timestep, area):
|
||||
h0 = initial_height
|
||||
Q_in = influx
|
||||
@@ -45,7 +19,6 @@ def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
|
||||
|
||||
def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1):
|
||||
alpha = (A1/A0-1)
|
||||
|
||||
h_hs = get_h_halfstep(h, Q0, Q1, dt, A0)
|
||||
p_hs = get_p_halfstep(p0, p1)
|
||||
Y1 = yn
|
||||
@@ -55,13 +28,3 @@ def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1):
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
|
||||
|
||||
|
||||
|
||||
## testing
|
||||
# if __name__ == "__main__":
|
||||
# influx = np.full([1, 100], 6)
|
||||
# outflux = np.full_like(influx, 4)
|
||||
# V_end, V_trend = Volume_trend(influx, outflux, timestep=0.5, V_0 = 100)
|
||||
# print(V_end)
|
||||
# print(V_trend)
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
def Volume_trend(influx, outflux, timestep=1, V_0=0):
|
||||
'''
|
||||
Returns the trend and the volume and the final volume, defined
|
||||
by influx and outflux patterns. The optional parameter timestep
|
||||
defines the time increment over which the fluxes are changing.
|
||||
'''
|
||||
net_flux = influx-outflux
|
||||
delta_V = net_flux*timestep
|
||||
V_trend = V_0+np.cumsum(delta_V)
|
||||
V_end = V_trend[-1]
|
||||
return V_end, V_trend
|
||||
|
||||
def Height_trend(V_trend, area=1, h_crit_low=-np.inf, h_crit_high=np.inf):
|
||||
'''
|
||||
Returns the trend and the height and the final height, defined
|
||||
by influx and outflux patterns as well as the crosssection area.
|
||||
The optional parameters h_crit_low/high indicate limits that the height
|
||||
should never exceed. If this occures, TRUE is returned in the corresponding
|
||||
h_crit_flag.
|
||||
'''
|
||||
h_trend = V_trend/area
|
||||
h_crit_flag_low = np.any(h_trend <= h_crit_low)
|
||||
h_crit_flag_high = np.any(h_trend >= h_crit_high)
|
||||
h_end = h_trend[-1]
|
||||
return h_trend, h_end, h_crit_flag_low, h_crit_flag_high
|
||||
|
||||
def get_h_halfstep(initial_height, influx, outflux, timestep, area):
|
||||
h0 = initial_height
|
||||
Q_in = influx
|
||||
Q_out = outflux
|
||||
dt = timestep
|
||||
A = area
|
||||
|
||||
h_halfstep = h0+1/A*(Q_in-Q_out)*dt/2
|
||||
|
||||
def get_p_halfstep(p0, p1):
|
||||
p_halfstep = (p0+p1)/2
|
||||
|
||||
def FODE_function(x, h, alpha, p, rho=1000., g=9.81):
|
||||
f = x*abs(x)/h*alpha+g-p/(rho*h)
|
||||
return f
|
||||
|
||||
|
||||
def e_RK_4(yn, h, dt, Q0, Q1, A0, A1, p0, p1):
|
||||
alpha = (A1/A0-1)
|
||||
|
||||
h_hs = get_h_halfstep(h, Q0, Q1, dt, A0)
|
||||
p_hs = get_p_halfstep(p0, p1)
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, p0)
|
||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
|
||||
|
||||
|
||||
|
||||
## testing
|
||||
# if __name__ == "__main__":
|
||||
# influx = np.full([1, 100], 6)
|
||||
# outflux = np.full_like(influx, 4)
|
||||
# V_end, V_trend = Volume_trend(influx, outflux, timestep=0.5, V_0 = 100)
|
||||
# print(V_end)
|
||||
# print(V_trend)
|
||||
@@ -1,90 +0,0 @@
|
||||
from Ausgleichsbecken import FODE_function, get_h_halfstep, get_p_halfstep
|
||||
from pressure_conversion import pressure_conversion
|
||||
class Ausgleichsbecken_class:
|
||||
# units
|
||||
area_unit = r'$\mathrm{m}^2$'
|
||||
area_outflux_unit = r'$\mathrm{m}^2$'
|
||||
level_unit = 'm'
|
||||
volume_unit = r'$\mathrm{m}^3$'
|
||||
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
||||
time_unit = 's'
|
||||
pressure_unit = 'Pa'
|
||||
|
||||
# init
|
||||
def __init__(self,area,outflux_area,level_min,level_max,timestep = 1):
|
||||
self.area = area # base area of the rectangular structure
|
||||
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
||||
self.level_min = level_min # lowest allowed water level
|
||||
self.level_max = level_max # highest allowed water level
|
||||
self.timestep = timestep # timestep of the simulation
|
||||
|
||||
def update_volume(self):
|
||||
self.volume = self.level*self.area
|
||||
# setter
|
||||
|
||||
def set_initial_level(self,initial_level):
|
||||
self.level = initial_level
|
||||
self.update_volume()
|
||||
|
||||
def set_influx(self,influx):
|
||||
self.influx = influx
|
||||
|
||||
def set_outflux(self,outflux):
|
||||
self.outflux = outflux
|
||||
|
||||
# getter
|
||||
def get_area(self):
|
||||
print('The base area of the cuboid reservoir is', self.area, self.area_unit)
|
||||
|
||||
def get_outflux_area(self):
|
||||
print('The outflux area from the cuboid reservoir to the pipeline is', \
|
||||
self.area_outflux, self.area_outflux_unit)
|
||||
|
||||
def get_level(self):
|
||||
print('The current level in the reservoir is', self.level , self.level_unit)
|
||||
|
||||
def get_crit_levels(self):
|
||||
print('The critical water levels in the reservoir are: \n',\
|
||||
' Minimum:', self.level_min , self.level_unit , '\n',\
|
||||
' Maximum:', self.level_max , self.level_unit )
|
||||
|
||||
def get_volume(self):
|
||||
print('The current water volume in the reservoir is', self.volume, self.volume_unit)
|
||||
|
||||
def get_timestep(self):
|
||||
print('The timestep for the simulation is' , self.timestep, self.time_unit)
|
||||
|
||||
def get_influx(self):
|
||||
print('The current influx is', self.influx, self.flux_unit)
|
||||
|
||||
def get_outflux(self):
|
||||
print('The current outflux is', self.outflux, self.flux_unit)
|
||||
|
||||
# methods
|
||||
|
||||
|
||||
def update_level(self,timestep):
|
||||
# dont update volume here, because update_level gets called to calculate h_halfstep
|
||||
net_flux = self.influx-self.outflux
|
||||
delta_V = net_flux*timestep
|
||||
new_level = (self.volume+delta_V)/self.area
|
||||
return new_level
|
||||
|
||||
|
||||
def e_RK_4(self):
|
||||
# Update to deal with non constant pipeline pressure!
|
||||
yn = self.outflux/self.area_outflux
|
||||
h = self.level
|
||||
dt = self.timestep
|
||||
p,_ = pressure_conversion(self.initial_pressure,self.pressure_unit,'Pa')
|
||||
p_hs,_ = pressure_conversion(self.initial_pressure,self.pressure_unit,'Pa')
|
||||
alpha = (self.area_outflux/self.area-1)
|
||||
h_hs = self.update_level(dt/2)
|
||||
Y1 = yn
|
||||
Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.initial_pressure)
|
||||
Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs)
|
||||
Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs)
|
||||
ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \
|
||||
2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p))
|
||||
|
||||
self.outflux = ynp1*self.area_outflux
|
||||
@@ -1,145 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"from Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from pressure_conversion import pressure_conversion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# define constants\n",
|
||||
"initial_level = 5. # m\n",
|
||||
"initial_influx = 1. # m³/s\n",
|
||||
"initial_outflux = 0. # m³/s\n",
|
||||
"initial_pipeline_pressure = 1.\n",
|
||||
"initial_pressure_unit = 'bar'\n",
|
||||
"conversion_pressure_unit = 'mWS'\n",
|
||||
"\n",
|
||||
"area_base = 1. # m²\n",
|
||||
"area_outflux = 0.5 # m²\n",
|
||||
"critical_level_low = 0. # m\n",
|
||||
"critical_level_high = 10. # m\n",
|
||||
"simulation_timestep = 0.001 # s\n",
|
||||
"\n",
|
||||
"# for while loop\n",
|
||||
"total_min_level = 0.01 # m\n",
|
||||
"total_max_time = 150 # s"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib qt\n",
|
||||
"\n",
|
||||
"V = Ausgleichsbecken_class(area_base, area_outflux, critical_level_low, critical_level_high,simulation_timestep)\n",
|
||||
"V.set_initial_level(initial_level) \n",
|
||||
"V.set_influx(initial_influx)\n",
|
||||
"V.set_outflux(initial_outflux)\n",
|
||||
"\n",
|
||||
"V.initial_pressure, V.pressure_unit = pressure_conversion(initial_pipeline_pressure,input_unit = initial_pressure_unit, target_unit = conversion_pressure_unit)\n",
|
||||
"\n",
|
||||
"time_vec = np.arange(0,total_max_time,simulation_timestep)\n",
|
||||
"outflux_vec = np.empty_like(time_vec)\n",
|
||||
"outflux_vec[0] = initial_outflux\n",
|
||||
"level_vec = np.empty_like(time_vec)\n",
|
||||
"level_vec[0] = initial_level\n",
|
||||
" \n",
|
||||
"i_max = -1\n",
|
||||
"\n",
|
||||
"for i in range(np.size(time_vec)-1):\n",
|
||||
" V.e_RK_4()\n",
|
||||
" V.level = V.update_level(V.timestep)\n",
|
||||
" V.update_volume()\n",
|
||||
" outflux_vec[i+1] = V.outflux\n",
|
||||
" level_vec[i+1] = V.level\n",
|
||||
" if V.level < total_min_level:\n",
|
||||
" i_max = i\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"fig1, (ax1, ax2, ax3) = plt.subplots(3, 1)\n",
|
||||
"fig1.set_figheight(10)\n",
|
||||
"fig1.suptitle('Ausgleichsbecken')\n",
|
||||
"\n",
|
||||
"ax1.plot(time_vec[:i_max],level_vec[:i_max], label='Water level')\n",
|
||||
"ax1.set_ylabel(r'$h$ ['+V.level_unit+']')\n",
|
||||
"ax1.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
||||
"ax1.legend()\n",
|
||||
"\n",
|
||||
"ax2.plot(time_vec[:i_max],outflux_vec[:i_max], label='Outflux')\n",
|
||||
"ax2.set_ylabel(r'$Q_{out}$ ['+V.flux_unit+']')\n",
|
||||
"ax2.set_xlabel(r'$t$ ['+V.time_unit+']')\n",
|
||||
"ax2.legend()\n",
|
||||
"\n",
|
||||
"# plt.subplots_adjust(left=0.2, bottom=0.2)\n",
|
||||
"ax3.set_axis_off()\n",
|
||||
"cell_text = np.array([[initial_level, V.level_unit], \\\n",
|
||||
" [initial_influx, V.flux_unit], \\\n",
|
||||
" [initial_outflux, V.flux_unit], \\\n",
|
||||
" [round(V.initial_pressure,2), V.pressure_unit], \\\n",
|
||||
" [simulation_timestep, V.time_unit], \\\n",
|
||||
" [area_base, V.area_unit], \\\n",
|
||||
" [area_outflux, V.area_unit]])\n",
|
||||
"\n",
|
||||
"row_labels =['initial_level', \\\n",
|
||||
" 'initial_influx', \\\n",
|
||||
" 'initial_outflux', \\\n",
|
||||
" 'initial_pipeline_pressure', \\\n",
|
||||
" 'simulation_timestep', \\\n",
|
||||
" 'area_base', \\\n",
|
||||
" 'area_outflux']\n",
|
||||
"\n",
|
||||
"plt.table(cellText=cell_text, \\\n",
|
||||
" cellLoc='center', \\\n",
|
||||
" colWidths=[0.3,0.1,0.3], \\\n",
|
||||
" rowLabels=row_labels, \\\n",
|
||||
" loc = 1, \\\n",
|
||||
" rowLoc='left', \\\n",
|
||||
" fontsize = 15.)\n",
|
||||
"\n",
|
||||
"fig1.tight_layout() "
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.13"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
@@ -1,77 +0,0 @@
|
||||
# convert to Pa
|
||||
def bar_to_pa(p):
|
||||
return p*1e5
|
||||
|
||||
def mWS_to_pa(p):
|
||||
return p*9.80665*1e3
|
||||
|
||||
def torr_to_pa(p):
|
||||
return p*133.322
|
||||
|
||||
def atm_to_pa(p):
|
||||
return p*101.325*1e3
|
||||
|
||||
def psi_to_pa(p):
|
||||
return p*6894.8
|
||||
|
||||
# convert from Pa
|
||||
def pa_to_bar(p):
|
||||
return p*1e-5
|
||||
|
||||
def pa_to_mWS(p):
|
||||
return p*1/(9.80665*1e3)
|
||||
|
||||
def pa_to_torr(p):
|
||||
return p/133.322
|
||||
|
||||
def pa_to_atm(p):
|
||||
return p*1/(101.325*1e3)
|
||||
|
||||
# converstion function
|
||||
|
||||
def pa_to_psi(p):
|
||||
return p/6894.8
|
||||
|
||||
def pressure_conversion(pressure, input_unit = 'bar', target_unit = 'Pa'):
|
||||
p = pressure
|
||||
if input_unit.lower() == 'bar':
|
||||
p_pa = bar_to_pa(p)
|
||||
elif input_unit.lower() == 'mws':
|
||||
p_pa = mWS_to_pa(p)
|
||||
elif input_unit.lower() == 'torr':
|
||||
p_pa = torr_to_pa(p)
|
||||
elif input_unit.lower() == 'atm':
|
||||
p_pa = atm_to_pa(p)
|
||||
elif input_unit.lower() == 'psi':
|
||||
p_pa = psi_to_pa(p)
|
||||
elif input_unit.lower() == 'pa':
|
||||
p_pa = p
|
||||
else:
|
||||
raise Exception('Given input unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||
|
||||
if target_unit.lower() == 'bar':
|
||||
return pa_to_bar(p_pa), target_unit
|
||||
elif target_unit.lower() == 'mws':
|
||||
return pa_to_mWS(p_pa), target_unit
|
||||
elif target_unit.lower() == 'torr':
|
||||
return pa_to_torr(p_pa), target_unit
|
||||
elif target_unit.lower() == 'atm':
|
||||
return pa_to_atm(p_pa), target_unit
|
||||
elif target_unit.lower() =='psi':
|
||||
return pa_to_psi(p_pa), target_unit
|
||||
elif target_unit.lower() == 'pa':
|
||||
return p_pa, target_unit
|
||||
else:
|
||||
raise Exception('Given target unit not recognised. \n Known units are: Pa, bar, mWs, Torr, atm, psi')
|
||||
|
||||
# testing_pressure_conversion
|
||||
if __name__ == '__main__':
|
||||
p = 1
|
||||
|
||||
unit_dict = ['Pa','Bar','Torr','Atm','MWS','psi']
|
||||
|
||||
for input_unit in unit_dict:
|
||||
for target_unit in unit_dict:
|
||||
converted_p = pressure_conversion(p,input_unit,target_unit)
|
||||
print(input_unit,target_unit)
|
||||
print(converted_p)
|
||||
Reference in New Issue
Block a user