added comments in preparation of merge

This commit is contained in:
Brantegger Georg
2023-02-06 09:57:23 +01:00
parent 1b70fbdab8
commit f855799ec1
5 changed files with 67 additions and 32 deletions

View File

@@ -1,6 +1,8 @@
import os
import sys
from logging import exception
# import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np
@@ -13,10 +15,12 @@ from functions.pressure_conversion import pressure_conversion
def FODE_function(x_out,h,A,A_a,p,rho,g):
# (FODE ... first order differential equation)
# describes the change in outflux velocity from a reservoir
# based on the outflux formula by Andreas Malcherek
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
# adapted for a pressurized pipeline into which the reservoir effuses
# and flow direction
# and flow direction
# see documentation in word-file
# x_out ... effusion velocity
# h ... level in the reservoir
# A_a ... Area_outflux
@@ -29,14 +33,14 @@ def FODE_function(x_out,h,A,A_a,p,rho,g):
class Ausgleichsbecken_class:
# units
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
# make sure that units and display units are the same!
# units are used to label graphs and disp units are used to have good formatting when using pythons print()
area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm'
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
pressure_unit = 'Pa' # !DO NOT CHANGE! needed for pressure conversion
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
volume_unit = r'$\mathrm{m}^3$'
@@ -55,6 +59,7 @@ class Ausgleichsbecken_class:
# init
# see docstring below
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
"""
Creates a reservoir with given attributes in this order: \n
@@ -62,8 +67,8 @@ class Ausgleichsbecken_class:
Outflux Area [m²] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
Minimal level [m] \n
Maximal level [m] \n
Minimum level [m] \n
Maximum level [m] \n
Density of the liquid [kg/m³] \n
"""
#set initial attributes
@@ -75,7 +80,8 @@ class Ausgleichsbecken_class:
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
self.timestep = timestep # timestep in the time evolution method
# initialize for get_info() (if get_info() gets called before set_steady_state() is executed)
# initialize for get_info() (if get_info() gets called before set_steady_state() was ever executed)
# is also used to check if set_steady_state() was ever executed
self.influx = -np.inf
self.outflux = -np.inf
self.level = -np.inf
@@ -97,7 +103,7 @@ class Ausgleichsbecken_class:
if self.pressure == -np.inf:
self.pressure = initial_pressure
else:
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based current level.')
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based on current level.')
def set_influx(self,influx):
# sets influx to the reservoir in m³/s
@@ -143,7 +149,7 @@ class Ausgleichsbecken_class:
ss_outflux = ss_influx
ss_influx_vel = abs(ss_influx/self.area)
ss_outflux_vel = abs(ss_outflux/self.area_out)
# see confluence doc for explaination on how to arrive at the ss pressure formula
# see word document for explaination on how to arrive at the ss pressure formula
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
# use setter methods to set the attributes to their steady state values
@@ -155,6 +161,7 @@ class Ausgleichsbecken_class:
# getter - return attributes
def get_info(self, full = False):
# prints out the info on the current state of the reservoir
# full = True gives more info
new_line = '\n'
if self.pressure != np.inf:
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
@@ -189,7 +196,8 @@ class Ausgleichsbecken_class:
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"----------------------------- {new_line}")
# print the info to console
print(print_str)
def get_current_influx(self):
@@ -210,12 +218,15 @@ class Ausgleichsbecken_class:
# update methods - update attributes based on some parameter
def update_level(self,timestep,set_flag=False):
# update level based on net flux and timestep by calculating the volume change in
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
# the timestep and then convert the new volume to a level by assuming a cuboid reservoir
# there is no call of the update_volume() function because I need the updated level from half a timestep in the reservoir evolution
# if update_volume() was called within this function, the script would produce wrong results.
net_flux = self.influx-self.outflux
delta_level = net_flux*timestep/self.area
level_new = (self.level+delta_level)
if level_new < 0.1:
raise Exception('Ausgleichsbecken leer')
# raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop
if level_new < 0.01:
raise Exception('Reservoir ran emtpy')
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
if set_flag == True:
self.set_level(level_new,display_warning=False)
@@ -224,7 +235,7 @@ class Ausgleichsbecken_class:
def update_pressure(self,set_flag=False):
# update pressure based on level and flux velocities
# see confluence doc for explaination
# see word document for explaination
influx_vel = abs(self.influx/self.area)
outflux_vel = abs(self.outflux/self.area_out)
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
@@ -245,6 +256,7 @@ class Ausgleichsbecken_class:
#methods
def timestep_reservoir_evolution(self):
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
# solve the FODE of the outflux velocity for one timestep using explicit four step Runge-Kutta method
# get some variables
dt = self.timestep