added comments in preparation of merge

This commit is contained in:
Brantegger Georg
2023-02-06 09:57:23 +01:00
parent 1b70fbdab8
commit f855799ec1
5 changed files with 67 additions and 32 deletions

View File

@@ -1,5 +1,8 @@
import os
import sys
# import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np
@@ -39,6 +42,7 @@ class Druckrohrleitung_class:
g = 9.81 # m/s² gravitational acceleration
# init
# see docstring below
def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
"""
Creates a reservoir with given attributes in this order: \n
@@ -154,6 +158,7 @@ class Druckrohrleitung_class:
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
# dynamic pressure does not play a role, because it has the same influence on both sides of the equation (constant flow velocity) and therefore cancels out
ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2)
# set the initial conditions
@@ -162,6 +167,7 @@ class Druckrohrleitung_class:
# getter - return attributes
def get_info(self):
# prints out the info on the current state of the reservoir
new_line = '\n'
angle_deg = round(self.angle/np.pi*180,3)
@@ -182,8 +188,11 @@ class Druckrohrleitung_class:
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
f"Velocity and pressure distribution are vectors and are accessible via the {new_line} \
get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. {new_line} \
See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.")
# print the info to console
print(print_str)
def get_current_pressure_distribution(self,disp_flag=False):
@@ -200,12 +209,14 @@ class Druckrohrleitung_class:
return self.v*self.A
def get_lowest_pressure_per_node(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
return self.p_min
def get_highest_pressure_per_node(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
@@ -244,7 +255,7 @@ class Druckrohrleitung_class:
g = self.g # graviational acceleration
alpha = self.angle # pipeline angle
# Vectorize this loop?
# Vectorized loop see below
for i in range(1,nn-1):
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
@@ -265,6 +276,7 @@ class Druckrohrleitung_class:
self.v_old = self.v.copy()
def timestep_characteristic_method_vectorized(self):
# faster then above
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand