Compare commits

...

10 Commits

Author SHA1 Message Date
Brantegger Georg
e66a48bea9 finished to-dos 2023-02-10 11:24:30 +01:00
Georg
093e4c2ea7 V0.99 2023-02-10 11:21:52 +01:00
Georg
b6453e7874 updated template notebook to include
instructions for setups with more/less turbines
2023-02-10 11:20:54 +01:00
Georg
0d50c9e9dd added KW Arriach Juypter Notebbok 2023-02-10 11:20:23 +01:00
Brantegger Georg
eb6091605e replaced Francis_Turbine by Turbine following
rename in last commit
2023-02-09 15:56:17 +01:00
Brantegger Georg
edb30ce512 cleaned up git ignore and moved KW Arriach loop
back out
2023-02-09 15:53:29 +01:00
Brantegger Georg
1385aaecbe renamed Francis Turbine class to just Turbine class 2023-02-09 15:51:34 +01:00
Brantegger Georg
3a22decfb4 updated KW steady state test 2023-02-09 15:11:36 +01:00
Brantegger Georg
3b095b2598 updated steady state test for the pipeline
and visualization of the pressure surge
2023-02-09 15:01:10 +01:00
Brantegger Georg
f3983cc007 updated Ausgleichbecken_steady_state test to run longer and
run empty at the end on purpose
2023-02-09 14:15:35 +01:00
16 changed files with 1174 additions and 521 deletions

7
.gitignore vendored
View File

@@ -2,16 +2,9 @@
*__pycache__/
.vscode/settings.json
*.pyc
Messing Around/
Messing Around/messy_nb.ipynb
Validation Data/
Druckrohrleitung/GIF Plots/
*__pycache__/
.vscode/settings.json
*.pyc
Messing Around/
Validation Data/
Druckrohrleitung/Gif Plots
Simulation Hammer/
Simulation Arriach/
Simulation Lamnitz/

View File

@@ -225,8 +225,8 @@ class Ausgleichsbecken_class:
delta_level = net_flux*timestep/self.area
level_new = (self.level+delta_level)
# raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop
# if level_new < 0.01:
# raise Exception('Reservoir ran emtpy')
if level_new < 0.01:
raise Exception('Reservoir ran emtpy')
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
if set_flag == True:
self.set_level(level_new,display_warning=False)

File diff suppressed because one or more lines are too long

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
@@ -73,16 +73,41 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 68,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible via the \n",
" get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n",
" See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n"
]
}
],
"source": [
"# create objects\n",
"\n",
@@ -93,12 +118,14 @@
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"pipe.get_info()\n"
"pipe.get_info()\n",
"\n",
"p_0 = pipe.get_initial_pressure_distribution()"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
@@ -106,9 +133,13 @@
"\n",
"level_vec = np.zeros_like(t_vec)\n",
"level_vec[0] = reservoir.get_current_level()\n",
"volume_vec = np.zeros_like(t_vec) \n",
"volume_vec[0] = reservoir.get_current_volume()\n",
"\n",
"\n",
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
"v_old = pipe.get_current_velocity_distribution()\n",
"Q_old = pipe.get_current_flux_distribution()\n",
"p_old = pipe.get_current_pressure_distribution()\n",
"\n",
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
@@ -116,51 +147,104 @@
" # through the time evolution of the reservoir respectively \n",
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
"v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.full_like(t_vec,v_old[-1])\n",
"p_boundary_res = np.zeros_like(t_vec)\n",
"p_boundary_tur = np.zeros_like(t_vec)\n",
"Q_boundary_res = np.zeros_like(t_vec)\n",
"Q_boundary_tur = np.zeros_like(t_vec)\n",
"\n",
"# set the boundary conditions for the first timestep\n",
"v_boundary_res[0] = v_old[0]\n",
"v_boundary_tur[0] = v_old[-1] \n",
"p_boundary_res[0] = p_old[0]\n",
"Q_boundary_res[0] = Q_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n",
"\n",
"v_boundary_tur[:np.argmin(np.abs(t_vec-100))] = v_old[-1] \n",
"v_boundary_tur[np.argmin(np.abs(t_vec-100)):] = 0\n",
"\n"
"Q_boundary_tur[0] = Q_old[-1]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"fig1,axs1 = plt.subplots(2,1)\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ [mWS]')\n",
"axs1[0].set_ylim([0.9*np.min(pressure_conversion(p_old,'Pa',pUnit_conv)),1.1*np.max(pressure_conversion(p_old,'Pa',pUnit_conv))])\n",
"lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa',pUnit_conv),marker='.')\n",
"\n",
"axs1[1].set_title('Velocity distribution in pipeline')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,Pip_head*1.1])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$v$ [m/s]')\n",
"lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.')\n",
"axs1[1].autoscale()\n",
"# axs1[1].set_ylim([0.9*np.min(v_old),1.1*np.max(v_boundary_res)])\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"plt.pause(1)"
"fig1.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 71,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The cuboid reservoir has the following attributes: \n",
"----------------------------- \n",
"Base area = 74.0 m² \n",
"Outflux area = 0.636 m² \n",
"Current level = 8.0 m\n",
"Critical level low = 0.0 m \n",
"Critical level high = inf m \n",
"Volume in reservoir = 592.0 m³ \n",
"Current influx = 0.773 m³/s \n",
"Current outflux = 0.773 m³/s \n",
"Current outflux vel = 1.215 m/s \n",
"Current pipe pressure = 7.854 mWS \n",
"Simulation timestep = 0.001013 s \n",
"Density of liquid = 1000.0 kg/m³ \n",
"----------------------------- \n",
"\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 1013.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 105.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 20.26 m \n",
"Pipeline angle = 0.104 rad \n",
"Pipeline angle = 5.95° \n",
"Darcy friction factor = 0.014 \n",
"Density of liquid = 1000.0 kg/m³ \n",
"Pressure wave vel. = 500.0 m/s \n",
"Simulation timestep = 0.04052 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible via the \n",
" get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n",
" See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n"
]
}
],
"source": [
"for it_pipe in range(1,nt+1):\n",
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
@@ -170,8 +254,8 @@
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
"\n",
" level_vec[it_pipe] = reservoir.get_current_level()\n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
" \n",
" # set boundary conditions for the next timestep of the characteristic method\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
@@ -181,6 +265,8 @@
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
" Q_boundary_tur[it_pipe] = pipe.get_current_flux_distribution()[-1]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" pipe.timestep_characteristic_method_vectorized()\n",
@@ -191,17 +277,31 @@
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_00.remove()\n",
" lo_01.remove()\n",
" # lo_02.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_00, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,'Pa', pUnit_conv),marker='.',c='blue')\n",
" lo_01, = axs1[1].plot(Pip_x_vec,v_old,marker='.',c='blue')\n",
" \n",
" fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" plt.pause(0.000001)\n",
" if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw() # force figure output\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) \n",
"\n",
"reservoir.get_info(full=True)\n",
"pipe.get_info()"
@@ -209,36 +309,56 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"fig2,axs2 = plt.subplots(2,2)\n",
"axs2[0,0].set_title('Pressure Reservoir')\n",
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))\n",
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[0,0].set_ylabel(r'$p$ [mWS]')\n",
"axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_res,pUnit_calc,pUnit_conv))])\n",
"level_plot_min = 0\n",
"level_plot_max = 15\n",
"\n",
"axs2[0,1].set_title('Velocity Reservoir')\n",
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"axs2[0,1].set_ylim([0.9*np.min(v_boundary_res),1.1*np.max(v_boundary_res)])\n",
"fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs3[0,0].legend()\n",
"\n",
"axs2[1,0].set_title('Pressure Turbine')\n",
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))\n",
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,0].set_ylabel(r'$p$ [mWS]')\n",
"axs2[1,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv)),1.1*np.max(pressure_conversion(p_boundary_tur,pUnit_calc,pUnit_conv))])\n",
"# axs3[0,1].set_title('LA')\n",
"# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n",
"axs2[1,1].set_title('Velocity Turbine')\n",
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
"axs2[1,1].set_ylim([0.95*np.min(v_boundary_tur),1.05*np.max(v_boundary_tur)])\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,np.full_like(t_vec,flux_init),label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n",
"fig2.tight_layout()\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()"
]
}

View File

@@ -6,18 +6,19 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#importing pressure conversion function\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class"
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from functions.pressure_conversion import pressure_conversion"
]
},
{
@@ -70,7 +71,7 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 3. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 62. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
@@ -79,23 +80,6 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"61.1829727786757\n"
]
}
],
"source": [
"print(pressure_conversion(600000,'Pa','mWS'))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
@@ -111,7 +95,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -156,7 +140,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -195,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -226,7 +210,7 @@
" v_old = pipe.get_current_velocity_distribution()\n",
"\n",
" # plot some stuff\n",
" if it_pipe%100 == 0:\n",
" if it_pipe%200 == 0:\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
@@ -264,7 +248,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [

View File

@@ -13,7 +13,7 @@ from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class
from functions.pressure_conversion import pressure_conversion
from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class
from Regler.Regler_class_file import PI_controller_class
from Turbinen.Turbinen_class_file import Francis_Turbine
from Turbinen.Turbinen_class_file import Turbine
Area_list = np.round(np.arange(40.,90.,5.),1)
Kp_list = np.round(np.arange(0.1,3.0,0.2),1)
@@ -113,8 +113,8 @@ for i in range(np.size(Area_list)):
# create objects
# influx setting turbines
OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)
OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)
OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)
OL_T2 = Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)
KW_OL = Kraftwerk_class()
KW_OL.add_turbine(OL_T1)
@@ -133,8 +133,8 @@ for i in range(np.size(Area_list)):
pipe.set_steady_state(flux_init,reservoir.get_current_pressure())
# downstream turbines
UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)
UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)
UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)
UL_T2 = Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)
KW_UL = Kraftwerk_class()
KW_UL.add_turbine(UL_T1)

643
KW Arriach.ipynb Normal file
View File

@@ -0,0 +1,643 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"to dos:\n",
"Francis Turbine in Turbine umbennenen\n",
"Fall für andere Anzahl an Turbinen in Dokumentation aufnehmen\n",
"DevBranch wegwerfen"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# code cell 0\n",
"import os\n",
"import sys\n",
"from datetime import datetime\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Turbine"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# # code cell 1\n",
"# # for loop creation\n",
"\n",
"# Area_list = np.round(np.arange(40.,90.,5.),1)\n",
"# Kp_list = np.round(np.arange(0.1,3.0,0.2),1)\n",
"# Ti_list = np.round(np.arange(10.,300.,10.),1)\n",
"\n",
"# # # if one wants to use the loop to save 1 specific configuration:\n",
"# # desired_area = 60\n",
"# # desired_KP = 0.7\n",
"# # desired_ti = 200.\n",
"\n",
"# # Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"# # Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"# # Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"\n",
"# for i in range(np.size(Area_list)):\n",
"# for j in range(np.size(Kp_list)):\n",
"# for k in range(np.size(Ti_list)):\n",
"# now = datetime.now()\n",
"# current_time = now.strftime(\"%H:%M:%S\")\n",
"# print(\"Current Time =\", current_time)\n",
"\n",
"# print('i = ',i, '/ ', str(np.size(Area_list)-1))\n",
"# print('j = ',j, '/ ', str(np.size(Kp_list)-1))\n",
"# print('k = ',k, '/ ', str(np.size(Ti_list)-1))\n",
"# print('area = ',Area_list[i])\n",
"# print('K_p = ',Kp_list[j])\n",
"# print('T_i = ',Ti_list[k])\n",
"\n",
"# with open('log.txt','a') as f:\n",
"# f.write(\"Current Time =\" + current_time + '\\n')\n",
"# f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\\n')\n",
"# f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\\n')\n",
"# f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\\n')\n",
"# f.write('area = '+str(Area_list[i])+ '\\n')\n",
"# f.write('K_p = '+str(Kp_list[j])+ '\\n')\n",
"# f.write('T_i = '+str(Ti_list[k])+ '\\n')\n",
"\n",
"# backup if script is used as jupyter notebook\n",
"desired_area = 60\n",
"desired_KP = 0.7\n",
"desired_ti = 200.\n",
"\n",
"Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"i = 0\n",
"j = 0\n",
"k = 0"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# code cell 2\n",
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n",
"OL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # simulation of \"Bacheinzug\"\n",
"OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T2_closingTime = 600. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 1.25 # [m] target level of the PI controller\n",
"Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller\n",
"Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.5 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
"Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# code cell 3\n",
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n",
"\n",
"KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n",
"flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# code cell 4\n",
"# using the get_info() methods\n",
"\n",
"# print(KW_OL.get_info())\n",
"# print(reservoir.get_info(full=True))\n",
"# print(pipe.get_info())\n",
"# print(KW_UL.get_info())\n",
"# print(level_control.get_info())\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# code cell 5\n",
"# initialization for Timeloop\n",
"\n",
"# OL KW\n",
" # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s \n",
"\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"\n",
"# creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop\n",
"\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir\n",
"Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep\n",
"level_vec[0] = level_init # storing the initial level in the reservoir\n",
"volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep\n",
"v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node\n",
"v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node\n",
"Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep\n",
"Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node\n",
"Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node\n",
"p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep\n",
"p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node\n",
"p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node\n",
"p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir\n",
"v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine\n",
"Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir\n",
"Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine\n",
"p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir\n",
"p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine\n",
"\n",
"v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n",
"v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n",
"Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n",
"Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n",
"p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n",
"p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n",
"\n",
"# OL KW\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"# UL KW\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# code cell 6\n",
"# displaying the guide vane openings\n",
"# for plot in separate window\n",
"%matplotlib qt5 \n",
"\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# code cell 7\n",
"# create the figure in which the evolution of the pipeline will be displayed\n",
"%matplotlib qt5\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,80])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-40,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n",
"# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# code cell 8\n",
"# time loop\n",
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" # update OL_KW and the influx into the reservoir\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_p_pseudo)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n",
" # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n",
" reservoir.set_pressure(p_old[0],display_warning=False)\n",
" reservoir.set_outflux(Q_old[0],display_warning=False)\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" # save the level and the volume in the reservoir \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" # update target value for UL_KW from the level controller\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" \n",
" # change the guide vane opening based on the target value and closing time limitation\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" # save the actual guide vane openings\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" # use the convergence method to avoid numerical errors\n",
" KW_UL.converge(convergence_parameters)\n",
" # save the first set of boundary conditions\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" # save the second set of boundary conditions\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" # use vectorized method for performance\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw() # force figure output\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# code cell 9\n",
"# plot some stuff in separate windows\n",
"\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"axs2.set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Fluxes')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()\n",
"# plt.close()\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# code cell 10\n",
"# code for plotting and safing the figures generated in the loop\n",
"\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs3[0,0].legend()\n",
"\n",
"axs3[0,1].set_title('LA')\n",
"axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"axs3[0,1].legend()\n",
"\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()\n",
"\n",
"# figname = 'Simulation Vorlage\\KW_Vorlage_Fläche_'+str(Res_area_base)+'_Kp_'+str(round(Con_K_p,1))+'_Ti_'+str(Con_T_i)+'.png'\n",
"# fig3.savefig(figname)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "DT_Slot3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "06e42ed9520aaad7103456df165a31ea40da0f41ac9dffb743274e5e314689f3"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -22,12 +22,12 @@
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
"from Turbinen.Turbinen_class_file import Turbine"
]
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -85,7 +85,7 @@
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -159,7 +159,7 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -167,7 +167,7 @@
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
@@ -186,7 +186,7 @@
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
@@ -200,94 +200,9 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Turbine has the following attributes: \n",
"----------------------------- \n",
"Type = Francis \n",
"Nominal flux = 1.0 m³/s \n",
"Nominal pressure = 10.197 mWS\n",
"Nominal LA = 100.0 % \n",
"Closing time = 600.0 s \n",
"Current flux = 1.0 m³/s \n",
"Current pipe pressure = 11.217 mWS \n",
"Current LA = 95.35 % \n",
"Simulation timestep = 0.06666666666666667 s \n",
"----------------------------- \n",
"\n",
"None\n",
"The cuboid reservoir has the following attributes: \n",
"----------------------------- \n",
"Base area = 20.0 m² \n",
"Outflux area = 0.636 m² \n",
"Current level = 1.25 m\n",
"Critical level low = 0.75 m \n",
"Critical level high = inf m \n",
"Volume in reservoir = 25.0 m³ \n",
"Current influx = 1.0 m³/s \n",
"Current outflux = 1.0 m³/s \n",
"Current outflux vel = 1.572 m/s \n",
"Current pipe pressure = 1.005 mWS \n",
"Simulation timestep = 0.00101010101010101 s \n",
"Density of liquid = 998.2067 kg/m³ \n",
"----------------------------- \n",
"\n",
"None\n",
"The pipeline has the following attributes: \n",
"----------------------------- \n",
"Length = 2000.0 m \n",
"Diameter = 0.9 m \n",
"Hydraulic head = 130.0 m \n",
"Number of segments = 50 \n",
"Number of nodes = 51 \n",
"Length per segments = 40.0 m \n",
"Pipeline angle = 0.065 rad \n",
"Pipeline angle = 3.727° \n",
"Darcy friction factor = 0.015 \n",
"Density of liquid = 998.2067 kg/m³ \n",
"Pressure wave vel. = 600.0 m/s \n",
"Simulation timestep = 0.06666666666666667 s \n",
"----------------------------- \n",
"Velocity and pressure distribution are vectors and are accessible via the \n",
" get_current_velocity_distribution() and get_current_pressure_distribution() methods of the pipeline object. \n",
" See also get_lowest_XXX_per_node() and get_highest_XXX_per_node() methods.\n",
"None\n",
"Turbine has the following attributes: \n",
"----------------------------- \n",
"Type = Francis \n",
"Nominal flux = 1.1 m³/s \n",
"Nominal pressure = 120.0 mWS\n",
"Nominal LA = 100.0 % \n",
"Closing time = 60.0 s \n",
"Current flux = 1.0 m³/s \n",
"Current pipe pressure = 126.624 mWS \n",
"Current LA = 88.5 % \n",
"Simulation timestep = 0.06666666666666667 s \n",
"----------------------------- \n",
"\n",
"None\n",
"Controller has the following attributes: \n",
"----------------------------- \n",
"Type = PI Controller \n",
"Setpoint = 1.25 \n",
"Deadband = 0.0 \n",
"Proportionality constant = 1.3 \n",
"Integration time = 200.0 [s] \n",
"Current control variable = 0.885 \n",
"Lower limit CV = 0.0 \n",
"Upper limit CV = 1.0 \n",
"Simulation timestep = 0.06666666666666667 [s] \n",
"----------------------------- \n",
"\n",
"None\n"
]
}
],
"outputs": [],
"source": [
"# code cell 4\n",
"# using the get_info() methods\n",
@@ -309,7 +224,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -374,7 +289,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -398,7 +313,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -449,7 +364,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -547,7 +462,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -634,12 +549,49 @@
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 15,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Warning: Cannot change to a different GUI toolkit: qt. Using qt5 instead.\n"
]
},
{
"ename": "SystemError",
"evalue": "initialization of QtCore failed without raising an exception",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mSystemError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32mc:\\Users\\georg\\Documents\\Persönliche Dokumente\\Arbeit\\Kelag\\Coding\\Python\\DT_Slot_3\\Kelag_DT_Slot_3\\KW Lamnitz.ipynb Cell 15\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/KW%20Lamnitz.ipynb#X20sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m \u001b[39m# code cell 10\u001b[39;00m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/KW%20Lamnitz.ipynb#X20sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m \u001b[39m# code for plotting and safing the figures generated in the loop\u001b[39;00m\n\u001b[1;32m----> <a href='vscode-notebook-cell:/c%3A/Users/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/KW%20Lamnitz.ipynb#X20sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m get_ipython()\u001b[39m.\u001b[39;49mrun_line_magic(\u001b[39m'\u001b[39;49m\u001b[39mmatplotlib\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39mqt\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/KW%20Lamnitz.ipynb#X20sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m level_plot_min \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[0;32m <a href='vscode-notebook-cell:/c%3A/Users/georg/Documents/Pers%C3%B6nliche%20Dokumente/Arbeit/Kelag/Coding/Python/DT_Slot_3/Kelag_DT_Slot_3/KW%20Lamnitz.ipynb#X20sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m level_plot_max \u001b[39m=\u001b[39m \u001b[39m3\u001b[39m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:2304\u001b[0m, in \u001b[0;36mInteractiveShell.run_line_magic\u001b[1;34m(self, magic_name, line, _stack_depth)\u001b[0m\n\u001b[0;32m 2302\u001b[0m kwargs[\u001b[39m'\u001b[39m\u001b[39mlocal_ns\u001b[39m\u001b[39m'\u001b[39m] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mget_local_scope(stack_depth)\n\u001b[0;32m 2303\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbuiltin_trap:\n\u001b[1;32m-> 2304\u001b[0m result \u001b[39m=\u001b[39m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m 2305\u001b[0m \u001b[39mreturn\u001b[39;00m result\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\IPython\\core\\magics\\pylab.py:99\u001b[0m, in \u001b[0;36mPylabMagics.matplotlib\u001b[1;34m(self, line)\u001b[0m\n\u001b[0;32m 97\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mAvailable matplotlib backends: \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m\"\u001b[39m \u001b[39m%\u001b[39m backends_list)\n\u001b[0;32m 98\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m---> 99\u001b[0m gui, backend \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mshell\u001b[39m.\u001b[39;49menable_matplotlib(args\u001b[39m.\u001b[39;49mgui\u001b[39m.\u001b[39;49mlower() \u001b[39mif\u001b[39;49;00m \u001b[39misinstance\u001b[39;49m(args\u001b[39m.\u001b[39;49mgui, \u001b[39mstr\u001b[39;49m) \u001b[39melse\u001b[39;49;00m args\u001b[39m.\u001b[39;49mgui)\n\u001b[0;32m 100\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_show_matplotlib_backend(args\u001b[39m.\u001b[39mgui, backend)\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3487\u001b[0m, in \u001b[0;36mInteractiveShell.enable_matplotlib\u001b[1;34m(self, gui)\u001b[0m\n\u001b[0;32m 3483\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m'\u001b[39m\u001b[39mWarning: Cannot change to a different GUI toolkit: \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m 3484\u001b[0m \u001b[39m'\u001b[39m\u001b[39m Using \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m instead.\u001b[39m\u001b[39m'\u001b[39m \u001b[39m%\u001b[39m (gui, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpylab_gui_select))\n\u001b[0;32m 3485\u001b[0m gui, backend \u001b[39m=\u001b[39m pt\u001b[39m.\u001b[39mfind_gui_and_backend(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpylab_gui_select)\n\u001b[1;32m-> 3487\u001b[0m pt\u001b[39m.\u001b[39;49mactivate_matplotlib(backend)\n\u001b[0;32m 3488\u001b[0m configure_inline_support(\u001b[39mself\u001b[39m, backend)\n\u001b[0;32m 3490\u001b[0m \u001b[39m# Now we must activate the gui pylab wants to use, and fix %run to take\u001b[39;00m\n\u001b[0;32m 3491\u001b[0m \u001b[39m# plot updates into account\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\IPython\\core\\pylabtools.py:359\u001b[0m, in \u001b[0;36mactivate_matplotlib\u001b[1;34m(backend)\u001b[0m\n\u001b[0;32m 354\u001b[0m \u001b[39m# Due to circular imports, pyplot may be only partially initialised\u001b[39;00m\n\u001b[0;32m 355\u001b[0m \u001b[39m# when this function runs.\u001b[39;00m\n\u001b[0;32m 356\u001b[0m \u001b[39m# So avoid needing matplotlib attribute-lookup to access pyplot.\u001b[39;00m\n\u001b[0;32m 357\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m \u001b[39mimport\u001b[39;00m pyplot \u001b[39mas\u001b[39;00m plt\n\u001b[1;32m--> 359\u001b[0m plt\u001b[39m.\u001b[39;49mswitch_backend(backend)\n\u001b[0;32m 361\u001b[0m plt\u001b[39m.\u001b[39mshow\u001b[39m.\u001b[39m_needmain \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[0;32m 362\u001b[0m \u001b[39m# We need to detect at runtime whether show() is called by the user.\u001b[39;00m\n\u001b[0;32m 363\u001b[0m \u001b[39m# For this, we wrap it into a decorator which adds a 'called' flag.\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\pyplot.py:282\u001b[0m, in \u001b[0;36mswitch_backend\u001b[1;34m(newbackend)\u001b[0m\n\u001b[0;32m 275\u001b[0m \u001b[39m# Backends are implemented as modules, but \"inherit\" default method\u001b[39;00m\n\u001b[0;32m 276\u001b[0m \u001b[39m# implementations from backend_bases._Backend. This is achieved by\u001b[39;00m\n\u001b[0;32m 277\u001b[0m \u001b[39m# creating a \"class\" that inherits from backend_bases._Backend and whose\u001b[39;00m\n\u001b[0;32m 278\u001b[0m \u001b[39m# body is filled with the module's globals.\u001b[39;00m\n\u001b[0;32m 280\u001b[0m backend_name \u001b[39m=\u001b[39m cbook\u001b[39m.\u001b[39m_backend_module_name(newbackend)\n\u001b[1;32m--> 282\u001b[0m \u001b[39mclass\u001b[39;00m \u001b[39mbackend_mod\u001b[39;00m(matplotlib\u001b[39m.\u001b[39mbackend_bases\u001b[39m.\u001b[39m_Backend):\n\u001b[0;32m 283\u001b[0m \u001b[39mlocals\u001b[39m()\u001b[39m.\u001b[39mupdate(\u001b[39mvars\u001b[39m(importlib\u001b[39m.\u001b[39mimport_module(backend_name)))\n\u001b[0;32m 285\u001b[0m required_framework \u001b[39m=\u001b[39m _get_required_interactive_framework(backend_mod)\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\pyplot.py:283\u001b[0m, in \u001b[0;36mswitch_backend.<locals>.backend_mod\u001b[1;34m()\u001b[0m\n\u001b[0;32m 282\u001b[0m \u001b[39mclass\u001b[39;00m \u001b[39mbackend_mod\u001b[39;00m(matplotlib\u001b[39m.\u001b[39mbackend_bases\u001b[39m.\u001b[39m_Backend):\n\u001b[1;32m--> 283\u001b[0m \u001b[39mlocals\u001b[39m()\u001b[39m.\u001b[39mupdate(\u001b[39mvars\u001b[39m(importlib\u001b[39m.\u001b[39;49mimport_module(backend_name)))\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\importlib\\__init__.py:127\u001b[0m, in \u001b[0;36mimport_module\u001b[1;34m(name, package)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mbreak\u001b[39;00m\n\u001b[0;32m 126\u001b[0m level \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n\u001b[1;32m--> 127\u001b[0m \u001b[39mreturn\u001b[39;00m _bootstrap\u001b[39m.\u001b[39;49m_gcd_import(name[level:], package, level)\n",
"File \u001b[1;32m<frozen importlib._bootstrap>:1014\u001b[0m, in \u001b[0;36m_gcd_import\u001b[1;34m(name, package, level)\u001b[0m\n",
"File \u001b[1;32m<frozen importlib._bootstrap>:991\u001b[0m, in \u001b[0;36m_find_and_load\u001b[1;34m(name, import_)\u001b[0m\n",
"File \u001b[1;32m<frozen importlib._bootstrap>:975\u001b[0m, in \u001b[0;36m_find_and_load_unlocked\u001b[1;34m(name, import_)\u001b[0m\n",
"File \u001b[1;32m<frozen importlib._bootstrap>:671\u001b[0m, in \u001b[0;36m_load_unlocked\u001b[1;34m(spec)\u001b[0m\n",
"File \u001b[1;32m<frozen importlib._bootstrap_external>:843\u001b[0m, in \u001b[0;36mexec_module\u001b[1;34m(self, module)\u001b[0m\n",
"File \u001b[1;32m<frozen importlib._bootstrap>:219\u001b[0m, in \u001b[0;36m_call_with_frames_removed\u001b[1;34m(f, *args, **kwds)\u001b[0m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\backend_qt5agg.py:7\u001b[0m, in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39m.\u001b[39;00m \u001b[39mimport\u001b[39;00m backends\n\u001b[0;32m 6\u001b[0m backends\u001b[39m.\u001b[39m_QT_FORCE_QT5_BINDING \u001b[39m=\u001b[39m \u001b[39mTrue\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39mbackend_qtagg\u001b[39;00m \u001b[39mimport\u001b[39;00m ( \u001b[39m# noqa: F401, E402 # pylint: disable=W0611\u001b[39;00m\n\u001b[0;32m 8\u001b[0m _BackendQTAgg, FigureCanvasQTAgg, FigureManagerQT, NavigationToolbar2QT,\n\u001b[0;32m 9\u001b[0m backend_version, FigureCanvasAgg, FigureCanvasQT\n\u001b[0;32m 10\u001b[0m )\n\u001b[0;32m 13\u001b[0m \u001b[39m@_BackendQTAgg\u001b[39m\u001b[39m.\u001b[39mexport\n\u001b[0;32m 14\u001b[0m \u001b[39mclass\u001b[39;00m \u001b[39m_BackendQT5Agg\u001b[39;00m(_BackendQTAgg):\n\u001b[0;32m 15\u001b[0m \u001b[39mpass\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\backend_qtagg.py:9\u001b[0m, in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mctypes\u001b[39;00m\n\u001b[0;32m 7\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mmatplotlib\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mtransforms\u001b[39;00m \u001b[39mimport\u001b[39;00m Bbox\n\u001b[1;32m----> 9\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39mqt_compat\u001b[39;00m \u001b[39mimport\u001b[39;00m QT_API, _enum, _setDevicePixelRatio\n\u001b[0;32m 10\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39m.\u001b[39;00m \u001b[39mimport\u001b[39;00m cbook\n\u001b[0;32m 11\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39mbackend_agg\u001b[39;00m \u001b[39mimport\u001b[39;00m FigureCanvasAgg\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\qt_compat.py:137\u001b[0m, in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 135\u001b[0m \u001b[39mfor\u001b[39;00m _setup, QT_API \u001b[39min\u001b[39;00m _candidates:\n\u001b[0;32m 136\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 137\u001b[0m _setup()\n\u001b[0;32m 138\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mImportError\u001b[39;00m:\n\u001b[0;32m 139\u001b[0m \u001b[39mcontinue\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\georg\\anaconda3\\envs\\DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\qt_compat.py:102\u001b[0m, in \u001b[0;36m_setup_pyqt5plus\u001b[1;34m()\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_isdeleted\u001b[39m(obj): \u001b[39mreturn\u001b[39;00m \u001b[39mnot\u001b[39;00m shiboken6\u001b[39m.\u001b[39misValid(obj)\n\u001b[0;32m 101\u001b[0m \u001b[39melif\u001b[39;00m QT_API \u001b[39m==\u001b[39m QT_API_PYQT5:\n\u001b[1;32m--> 102\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mPyQt5\u001b[39;00m \u001b[39mimport\u001b[39;00m QtCore, QtGui, QtWidgets\n\u001b[0;32m 103\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39msip\u001b[39;00m\n\u001b[0;32m 104\u001b[0m __version__ \u001b[39m=\u001b[39m QtCore\u001b[39m.\u001b[39mPYQT_VERSION_STR\n",
"\u001b[1;31mSystemError\u001b[0m: initialization of QtCore failed without raising an exception"
]
}
],
"source": [
"# code cell 10\n",
"# code for plotting and safing the figures generated in the loop\n",
"%matplotlib qt\n",
"\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
@@ -694,7 +646,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"display_name": "DT_Slot3",
"language": "python",
"name": "python3"
},
@@ -708,12 +660,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.8.16"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
"hash": "06e42ed9520aaad7103456df165a31ea40da0f41ac9dffb743274e5e314689f3"
}
}
},

View File

@@ -14,7 +14,7 @@ from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class
from functions.pressure_conversion import pressure_conversion
from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class
from Regler.Regler_class_file import PI_controller_class
from Turbinen.Turbinen_class_file import Francis_Turbine
from Turbinen.Turbinen_class_file import Turbine
# code cell 1
# for loop creation
@@ -120,7 +120,7 @@ for i in range(np.size(Area_list)):
# create objects
# influx setting turbines
OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)
OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)
KW_OL = Kraftwerk_class()
KW_OL.add_turbine(OL_T1)
@@ -139,7 +139,7 @@ for i in range(np.size(Area_list)):
pipe.set_steady_state(flux_init,reservoir.get_current_pressure())
# downstream turbines
UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)
UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)
KW_UL = Kraftwerk_class()
KW_UL.add_turbine(UL_T1)

View File

@@ -1,15 +1,5 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"to dos:\n",
"Francis Turbine in Turbine umbennenen\n",
"Fall für andere Anzahl an Turbinen in Dokumentation aufnehmen\n",
"DevBranch wegwerfen"
]
},
{
"attachments": {},
"cell_type": "markdown",
@@ -94,7 +84,7 @@
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
"from Turbinen.Turbinen_class_file import Turbine"
]
},
{
@@ -156,11 +146,14 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- adapt tubine parameters\n",
" - if number of turbines in OL not equal to 2, copy (or) delete lines 17-19\n",
" - if number of turbines in UL not equal to 2, copy (or) delete lines 26-28\n",
"- adapt controller parameters\n",
"- adapt pipeline parameters\n",
"- adapt reservoir parameters\n",
@@ -246,11 +239,14 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n"
"- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n",
"- adapt for the number of turbines in your project\n",
" - lines 6,10,27,31\n"
]
},
{
@@ -263,8 +259,8 @@
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
@@ -284,8 +280,8 @@
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
@@ -315,11 +311,14 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change the influx through the OL HPP by manually setting the guide vane openings\n"
"- change the influx through the OL HPP by manually setting the guide vane openings\n",
"- adapt for the number of turbines in your project\n",
" - lines 11,54,55,61,62,67,68\n"
]
},
{
@@ -398,6 +397,16 @@
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- adapt for the number of turbines in your project\n",
" - line 9"
]
},
{
"cell_type": "code",
"execution_count": 25,
@@ -410,13 +419,9 @@
"%matplotlib qt5 \n",
"\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.set_title('LA target')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
@@ -467,11 +472,14 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- in line 10 OL_p_pseudo is used"
"- in line 10 OL_p_pseudo is used\n",
"- adapt for the number of turbines in your project\n",
" - line 10,29,32,34,35"
]
},
{
@@ -573,6 +581,17 @@
" plt.pause(0.1) "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change level_plot min and max in lines 4 and 5\n",
"- adapt for the number of turbines in your project\n",
" - line 26,27,30,31"
]
},
{
"cell_type": "code",
"execution_count": 28,
@@ -651,11 +670,14 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change level_plot_min and _max\n",
"- adapt for the number of turbines in your project\n",
" - line 26,27,30,31\n",
"- check that folder for saving figures is present in same directory as this file\n",
"- change name of the saved file in line 54: Vorlage -> ..."
]

View File

@@ -11,7 +11,6 @@ current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
from Turbinen.Turbinen_class_file import Francis_Turbine
class Kraftwerk_class:

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -18,13 +18,13 @@
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine\n",
"from Turbinen.Turbinen_class_file import Turbine\n",
"from Regler.Regler_class_file import PI_controller_class"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -95,7 +95,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -110,8 +110,8 @@
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T1 = Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
@@ -120,8 +120,8 @@
"KW_OL.set_steady_state_by_flux(flux_init,OL_T1_p_nenn)\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T1 = Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
@@ -136,7 +136,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -208,40 +208,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# Con_T_ime loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(2,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_title('Flux distribution in pipeline')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"lo_p, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_q, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"axs1[0].autoscale()\n",
"axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -296,37 +263,16 @@
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0:\n",
" lo_p.remove()\n",
" lo_pmin.remove()\n",
" lo_pmax.remove()\n",
" lo_q.remove()\n",
" lo_qmin.remove()\n",
" lo_qmax.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_p, = axs1[0].plot(Pip_x_vec,pipe.get_current_pressure_distribution(disp_flag=True),marker='.',c='blue')\n",
" lo_pmin, = axs1[0].plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_pmax, = axs1[0].plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
" lo_q, = axs1[1].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_qmin, = axs1[1].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_qmax, = axs1[1].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw()\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.000001) "
" Q_old = pipe.get_current_flux_distribution()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
@@ -389,7 +335,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -434,13 +380,6 @@
"fig3.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -1,2 +1,2 @@
DT Slot 3 2022
test git fetch
Hier könnte ihre tolle Dokumentation dieses Codes stehen :-)

View File

@@ -11,7 +11,7 @@ sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
class Francis_Turbine:
class Turbine:
# units
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
@@ -119,7 +119,7 @@ class Francis_Turbine:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"Turbine has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Type = Francis {new_line}"
f"Type = Generisch {new_line}"
f"Nominal flux = {self.Q_n:<10} {self.flux_unit_disp} {new_line}"
f"Nominal pressure = {round(p_n,3):<10} {self.pressure_unit_disp}{new_line}"
f"Nominal LA = {self.LA_n*100:<10} {self.LA_unit_disp} {new_line}"

File diff suppressed because one or more lines are too long

View File

@@ -2,28 +2,29 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from Turbinen_class_file import Francis_Turbine\n",
"\n",
"import sys\n",
"import os\n",
"import sys\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Turbinen_class_file import Turbine\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Regler.Regler_class_file import PI_controller_class"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@@ -31,7 +32,7 @@
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 1000. # [kg/m³] density of water \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
"\n",
@@ -42,8 +43,8 @@
"\n",
" # for PI controller\n",
"Con_targetLevel = 8. # [m]\n",
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_K_p = 2. # [-] proportional constant of PI controller\n",
"Con_T_i = 100. # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
@@ -74,19 +75,23 @@
" # for general simulation\n",
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"simTime_target = 1800. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"# influx setting turbine\n",
"turbine_in = Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime/2,Pip_dt,pUnit_conv)\n",
"turbine_in.set_steady_state_by_flux(flux_init,Tur_p_nenn)\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
@@ -96,13 +101,9 @@
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbine\n",
"turbine = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
"turbine = Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime,Pip_dt,pUnit_conv)\n",
"turbine.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# influx setting turbine\n",
"turbine_in = Francis_Turbine(Tur_Q_nenn,Tur_p_nenn,Tur_closingTime/2,Pip_dt,pUnit_conv)\n",
"turbine_in.set_steady_state_by_flux(flux_init,Tur_p_nenn)\n",
"\n",
"# level controll\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(turbine.get_current_LA(),display_warning=False)\n"
@@ -110,7 +111,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -127,7 +128,7 @@
"p_max = pipe.get_current_pressure_distribution()\n",
"\n",
"Q_in_vec = np.zeros_like(t_vec)\n",
"Q_in_vec[0] = flux_init\n",
"Q_in_vec[0] = turbine_in.get_current_Q()\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec)\n",
"v_boundary_tur = np.zeros_like(t_vec)\n",
@@ -146,16 +147,18 @@
"p_boundary_res[0] = p_old[0]\n",
"p_boundary_tur[0] = p_old[-1]\n",
"\n",
"LA_soll_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"LA_ist_vec = np.full_like(t_vec,turbine.get_current_LA())\n",
"OL_LA_soll_vec = np.full_like(t_vec,turbine_in.get_current_LA())\n",
"OL_LA_ist_vec = np.full_like(t_vec,turbine_in.get_current_LA())\n",
"\n",
"LA_soll_vec2 = np.full_like(t_vec,turbine_in.get_current_LA())\n",
"# LA_soll_vec2[100:] = 0\n"
"UL_LA_soll_vec = np.zeros_like(t_vec)\n",
"UL_LA_soll_vec[0] = turbine.get_current_LA()\n",
"UL_LA_ist_vec = np.zeros_like(t_vec)\n",
"UL_LA_ist_vec[0] = turbine.get_current_LA()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
@@ -188,7 +191,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
@@ -197,7 +200,7 @@
"# loop through Con_T_ime steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" turbine_in.update_LA(LA_soll_vec2[it_pipe])\n",
" turbine_in.update_LA(OL_LA_soll_vec[it_pipe])\n",
" turbine_in.set_pressure(Tur_p_nenn)\n",
" Q_in_vec[it_pipe] = turbine_in.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
@@ -214,11 +217,11 @@
"\n",
" # get the control variable\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" LA_soll_vec[it_pipe] = level_control.get_current_control_variable()\n",
" UL_LA_soll_vec[it_pipe] = level_control.get_current_control_variable()\n",
" \n",
" # change the Leitapparatöffnung based on the target value\n",
" turbine.update_LA(LA_soll_vec[it_pipe])\n",
" LA_ist_vec[it_pipe] = turbine.get_current_LA()\n",
" turbine.update_LA(UL_LA_soll_vec[it_pipe])\n",
" UL_LA_ist_vec[it_pipe] = turbine.get_current_LA()\n",
"\n",
" # set boundary condition for the next timestep of the characterisCon_T_ic method\n",
" turbine.set_pressure(p_old[-1])\n",
@@ -269,12 +272,11 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"# plot Con_T_ime evolution of boundary pressure and velocity as well as the reservoir level\n",
"\n",
"%matplotlib qt5\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
@@ -287,43 +289,45 @@
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*LA_soll_vec,label='Target')\n",
"axs2.plot(t_vec,100*LA_ist_vec,label='Actual')\n",
"axs2.plot(t_vec,100*OL_LA_soll_vec,label='OL Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_LA_ist_vec[::200],label='OL Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*UL_LA_soll_vec,label='UL Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_LA_ist_vec[::200],label='UL Actual',c='r',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res,pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur,pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_tur,label='Flux Turbine')\n",
"axs2.set_ylim(-2*Tur_Q_nenn,+2*Tur_Q_nenn)\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Pressure')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"# fig2,axs2 = plt.subplots(1,1)\n",
"# axs2.set_title('Min and Max Fluxes')\n",
"# axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"# axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"# axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"# axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Fluxes')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()"
@@ -331,10 +335,47 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": []
"source": [
"fig3,axs3 = plt.subplots(2,2)\n",
"axs3[0,0].set_title('Level and Volume reservoir')\n",
"axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"x_twin_00 = axs3[0,0].twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"axs3[0,0].legend()\n",
"\n",
"axs3[0,1].set_title('LA')\n",
"axs3[0,1].plot(t_vec,100*OL_LA_soll_vec,label='OL Target',c='b')\n",
"axs3[0,1].scatter(t_vec[::200],100*OL_LA_ist_vec[::200],label='OL Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*UL_LA_soll_vec,label='UL Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_LA_ist_vec[::200],label='UL Actual',c='r',marker='+')\n",
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"axs3[0,1].legend()\n",
"\n",
"axs3[1,0].set_title('Fluxes')\n",
"axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs3[1,0].legend()\n",
"\n",
"axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs3[1,1].legend()\n",
"\n",
"fig3.tight_layout()\n",
"plt.show()"
]
}
],
"metadata": {