{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import plotly.express as px\n", "from plotly.subplots import make_subplots\n", "import plotly.graph_objects as go\n", "from flow_patterns import return_flux_profiles,make_flux_df\n", "from volume_change import V_h_test_2,h_V_test_2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# #constant flows\n", "# #number of steps\n", "# n = 100\n", "# #input identifiers\n", "# i_i_1 = 0\n", "# #output identifiers\n", "# o_i_1 = 0\n", "# # influx and outflux offset\n", "# i_o = 10\n", "# o_o = 10\n", "# #outflux delay\n", "# o_d = 10\n", "\n", "# influx_profile,outflux_profile = return_flux_profiles(n,i_i_1,o_i_1,i_o,o_o,o_d)\n", "# flux_df = make_flux_df(influx_profile,outflux_profile)\n", "\n", "# fig = make_subplots(2,1)\n", "\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n", "# fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# #linear increasing flows\n", "# #number of steps\n", "# n = 100\n", "# #input identifiers\n", "# i_i_2 = 'lin_0010'\n", "# #output identifiers\n", "# o_i_2 = 'lin_0010'\n", "# # influx and outflux offset\n", "# i_o = 10\n", "# o_o = 10\n", "# #outflux delay\n", "# o_d = 10\n", "\n", "# influx_profile,outflux_profile = return_flux_profiles(n,i_i_2,o_i_2,i_o,o_o,o_d)\n", "# flux_df = make_flux_df(influx_profile,outflux_profile)\n", "\n", "# fig = make_subplots(2,1)\n", "\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n", "# fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# #sawtooth flows\n", "# #number of steps\n", "# n = 100\n", "# #input identifiers\n", "# i_i_3 = 'st_0010_0010'\n", "# #output identifiers\n", "# o_i_3 = 'st_0010_0010'\n", "# # influx and outflux offset\n", "# i_o = 10\n", "# o_o = 10\n", "# #outflux delay\n", "# o_d = 10\n", "\n", "# influx_profile,outflux_profile = return_flux_profiles(n,i_i_3,o_i_3,i_o,o_o,o_d)\n", "# flux_df = make_flux_df(influx_profile,outflux_profile)\n", "\n", "# fig = make_subplots(2,1)\n", "\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n", "# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n", "# fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" }, "kernelspec": { "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }