from Ausgleichsbecken import FODE_function, get_h_halfstep, get_p_halfstep class Ausgleichsbecken_class: # units area_unit = 'm^2' area_outflux_unit = 'm^2' level_unit = 'm' volume_unit = 'm^3' flux_unit = 'm^3/s' time_unit = 's' # init def __init__(self,area,outflux_area,level_min,level_max,timestep = 1): self.area = area # base area of the rectangular structure self.area_outflux = outflux_area # area of the outlet towards the pipeline self.level_min = level_min # lowest allowed water level self.level_max = level_max # highest allowed water level self.timestep = timestep # timestep of the simulation # setter def set_volume(self): self.volume = self.level*self.area def set_initial_level(self,initial_level): self.level = initial_level self.set_volume() def set_influx(self,influx): self.influx = influx def set_outflux(self,outflux): self.outflux = outflux # getter def get_area(self): print('The base area of the cuboid reservoir is', self.area, self.area_unit) def get_outflux_area(self): print('The outflux area from the cuboid reservoir to the pipeline is', \ self.area_outflux, self.area_outflux_unit) def get_level(self): print('The current level in the reservoir is', self.level , self.level_unit) def get_crit_levels(self): print('The critical water levels in the reservoir are: \n',\ ' Minimum:', self.level_min , self.level_unit , '\n',\ ' Maximum:', self.level_max , self.level_unit ) def get_volume(self): print('The current water volume in the reservoir is', self.volume, self.volume_unit) def get_timestep(self): print('The timestep for the simulation is' , self.timestep, self.time_unit) def get_influx(self): print('The current influx is', self.influx, self.flux_unit) def get_outflux(self): print('The current outflux is', self.outflux, self.flux_unit) # methods def update_level(self,timestep): net_flux = self.influx-self.outflux delta_V = net_flux*timestep new_level = (self.volume+delta_V)/self.area return new_level def e_RK_4(self): yn = self.outflux/self.area_outflux h = self.level dt = self.timestep p = self.p0 p_hs = self.p0 alpha = (self.area_outflux/self.area-1) h_hs = self.update_level(dt/2) Y1 = yn Y2 = yn + dt/2*FODE_function(Y1, h, alpha, self.p0) Y3 = yn + dt/2*FODE_function(Y2, h_hs, alpha, p_hs) Y4 = yn + dt*FODE_function(Y3, h_hs, alpha, p_hs) ynp1 = yn + dt/6*(FODE_function(Y1, h, alpha, p)+2*FODE_function(Y2, h_hs, alpha, p_hs)+ \ 2*FODE_function(Y3, h_hs, alpha, p_hs)+ FODE_function(Y4, h, alpha, p)) self.outflux = ynp1*self.area_outflux