{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from datetime import datetime\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "Juni_1_df = pd.read_csv('TB_Juni_1.csv')\n", "Juni_2_df = pd.read_csv('TB_Juni_2.csv')\n", "Juni_3_df = pd.read_csv('TB_Juni_3.csv')\n", "Juli_1_df = pd.read_csv('TB_Juli_1.csv')\n", "Juli_2_df = pd.read_csv('TB_Juli_2.csv')\n", "Juli_3_df = pd.read_csv('TB_Juli_3.csv')\n", "August_1_df = pd.read_csv('TB_August_1.csv')\n", "August_2_df = pd.read_csv('TB_August_2.csv')\n", "August_3_df = pd.read_csv('TB_August_3.csv')\n", "\n", "TB_df = pd.concat([Juni_1_df,Juni_2_df,Juni_3_df,Juli_1_df,Juli_2_df,Juli_3_df,August_1_df,August_2_df,August_3_df],axis=0,ignore_index=True)\n", "\n", "\n", "TB_df.set_index('Timestamp',inplace=True)\n", "TB_df.sort_index(inplace=True)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "UT_df = pd.read_csv('UT_df.csv',index_col='Timestamp').sort_index()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "UT_df.rename(columns={'M1-Druck':'UL_T1_p','M1-LA':'UL_T1_LA','M2-Druck':'UL_T2_p','M2-LA':'UL_T2_LA'},inplace=True)\n", "TB_df.rename(columns={'M1-Druck':'OL_T1_p','M1-LA':'OL_T1_LA','M2-Druck':'OL_T2_p','M2-LA':'OL_T2_LA'},inplace=True)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "TB_t_vec = TB_df.index.to_numpy()\n", "TB_M1_p = TB_df['OL_T1_p'].to_numpy()\n", "TB_M2_p = TB_df['OL_T2_p'].to_numpy()\n", "TB_M1_LA = TB_df['OL_T1_LA'].to_numpy()\n", "TB_M2_LA = TB_df['OL_T2_LA'].to_numpy()\n", "TB_level = UT_df['TB-Pegel'].to_numpy()\n", "\n", "UT_t_vec = UT_df.index.to_numpy()\n", "UT_M1_p = UT_df['UL_T1_p'].to_numpy()\n", "UT_M2_p = UT_df['UL_T2_p'].to_numpy()\n", "UT_M1_LA = UT_df['UL_T1_LA'].to_numpy()\n", "UT_M2_LA = UT_df['UL_T2_LA'].to_numpy()\n", "UT_Ausl = UT_df['Ausl'].to_numpy()\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1657542740.9878564, 1657553169.3173888)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%matplotlib qt5\n", "t1 = 1657542740.9878564\n", "t2 = 1657553169.3173888\n", "\n", "\n", "fig1 = plt.figure()\n", "plt.plot(UT_t_vec,TB_level)\n", "ax = plt.gca()\n", "ax.set_xlim([t1,t2])\n", "\n", "fig2 = plt.figure()\n", "plt.plot(TB_t_vec,TB_M1_LA)\n", "plt.plot(TB_t_vec,TB_M2_LA)\n", "ax = plt.gca()\n", "ax.set_xlim([t1,t2])\n", "\n", "fig3 = plt.figure()\n", "plt.plot(UT_t_vec,UT_M1_LA)\n", "plt.plot(UT_t_vec,UT_M2_LA)\n", "ax = plt.gca()\n", "ax.set_xlim([t1,t2])\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "mask_UT = np.logical_and(t1