{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# # only need to import the function you want to use\n", "# # secondary functions, that are called within the imported one, don't need to be importex explicitly\n", "# from volume_change import V_von_h\n", "\n", "# V_von_h(10)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# create in and outflux vectors\n", "import pandas as pd\n", "import numpy as np\n", "from numpy import cos,sin\n", "from volume_change import V_h_test_1,h_V_test_1,V_h_test_2,h_V_test_2\n", "from flow_patterns import return_flux_profiles,make_flux_df\n", "\n", "\n", "t_max = 1000\n", "timestep = 00.1\n", "time = np.arange(0,t_max,timestep)\n", "#input identifiers\n", "i_i = 'st_0010_0010'\n", "#output identifiers\n", "o_i = 'st_0010_0010'\n", "# influx and outflux offset\n", "i_o = 7.5\n", "o_o = 8.\n", "#outflux delay\n", "o_d = 5\n", "\n", "influx, outflux = return_flux_profiles(len(time),i_i,o_i,i_o,o_o,o_d)\n", "\n", "\n", "h_0 = 0.\n", "\n", "V_t = np.empty_like(time,dtype=float)\n", "h_t = np.empty_like(time,dtype=float)\n", "delta_Q = np.empty_like(time,dtype=float)\n", "delta_V = np.empty_like(time,dtype=float)\n", "\n", "for i in range(len(time)):\n", " delta_Q[i] = influx[i]-outflux[i]\n", " delta_V[i] = delta_Q[i]*timestep\n", " if i == 0:\n", " V_t[0] = V_h_test_2(h_0)\n", " else:\n", " V_t[i] = V_t[i-1]+delta_V[i]\n", " \n", " h_t[i] = h_V_test_2(V_t[i])\n", "\n", "df = pd.DataFrame(np.transpose([time,influx,outflux,h_t,V_t]),columns=['time','influx','outflux','h_t','V_t'])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEGCAYAAAB4lx7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfc0lEQVR4nO3deXhTZdoG8PtpSylLASmgQIHTsgjIUqEiKLiD0Iw6Oo766bgi6Lh8zDDqF1ooItBmXGdxGbdx31B0QNMWKK4jiBQFZKelQcpaQLEC3d/vj6RaoKVJzpsmJ7l/19WLNk3uvKfKw+k5J3dEKQUiIrKuqGAvgIiIzOEgJyKyOA5yIiKL4yAnIrI4DnIiIouLCcaTdurUSRmGEYynJiKyrFWrVu1XSnU+/vagDHLDMFBQUBCMpyYisiwR2d7Q7Ty0QkRkcRzkREQWx0FORGRxQTlGTkQUCFVVVSgpKUF5eXmwl2JKXFwcEhMT0aJFC6/uz0FORGGjpKQE8fHxMAwDIhLs5fhFKYUDBw6gpKQESUlJXj2Gh1aIKGyUl5cjISHBskMcAEQECQkJPv1WwUFORGHFykO8jq/bYKlBXlFdg+zcjfipvCrYSyEiChmWGuRPLNmKZz/bhiEPLsakV/mCIiIiwGKDfPeho798vmTDXhh2Jzbs+imIKyIi+pXL5cKgQYO8uu/LL7+MXbt2aXleSw3y6toT380o7R9fwLA7UV1TG4QVERH5R+cgt9TlhzU1jb8tXZ+MXMy8bCBuPde7y3WIKLzN+nC99t/YB3Zrh5mXnXHS+9TU1GDSpElYtmwZunfvjgULFqBVq1bH3Oe9995DQUEBbrjhBrRq1QrLly8/4T6+sNge+cn3umd9uAGG3YnSsopmWhER0bG2bt2Ku+++G+vXr0eHDh0wf/78E+5z9dVXIzU1FW+88QZWr15taogDFtsjrzrJHnl9Z83Nx4Cu7ZA7ZUyAV0REoaqpPedASUpKQkpKCgBg+PDhcLlcAX9OS+2R1zRwjLwxG3f/BMPuxLKi/QFcERHRsVq2bPnL59HR0aiurg74c1pqkDd1aKUh1z+/AobdifKqmgCsiIjIP/Hx8SgrK9OSZalB7sse+fH6z8hDVs5GjashIvLfLbfcgjvvvBMpKSk4evRo0w84CVHK/+Hor9TUVOXPOwTd+OIKfLHV/KGSLx64ED06tjadQ0ShZePGjRgwYECwl6FFQ9siIquUUqnH39dSe+RnGR215Ix5+BP0Sc8xtYdPRBQqtAxyERkvIptFpFBE7DoyG1JVUwsR4PmbTvgHyWfVtQq903OQ891uDSsjImrY3XffjZSUlGM+XnrpJa3PYfryQxGJBvAUgLEASgCsFJGFSqkNZrOPV1lTi9joKIwdeCqKstIwMDMPFdXmXtF51xvfAADWzboUbVta6mpMImqAUiqkGhCfeuopnx/j6yFvHXvkIwAUKqW2KaUqAbwN4AoNuSeorHYPcgCIjhJsnjMB//2/C7VkD5q5CH98fZWWLCIKjri4OBw4cMDnQRhK6t5YIi4uzuvH6NgF7Q5gR72vSwCcffydRGQygMkA0LNnT7+eqKqmFrExx/7bk3hKa7gcNjyyaBOe+qTIr9w6uev2wLA7kTtlDAZ0bWcqi4iaX2JiIkpKSlBaWhrspZhS91Zv3jJ91YqI/B7ApUqp2z1f3whghFLq3sYe4+9VKzsOHsH+nytwZs9TGvx+eVUN+s/I8zm3MUVZaYiOCp1f0YgosgXyqpUSAD3qfZ0IQE+l13F6dGzd6BAHgLgW0XA5bHh78kgtz9c7PQevfbVdSxYRUaDoGOQrAfQVkSQRiQVwHYCFGnL9NjI5AcXZaRiS2N501oz/rINhd2L/zyziIqLQZHqQK6WqAdwDYBGAjQDmKaXWm801S0Sw8J7RWDX9Ei15qXPycfmT/9WSRUSkk6Ve2WnGK8tcmLlQz78v70weibOTE7RkERF5Kyxe2WnGzecYKJw7QUvWtc99xSIuIgoZETPIASAmOgouhw2L/nSelrz+M/Lw17xNWrKIiPwVUYO8zumnxcPlsME2uKvprGc+LYJhd6LkhyMaVkZE5LuIOUbemLLyKgx+cLGWrLgWUVg/azyvPSeigIj4Y+SNiY9rAZfDhn/9YbjprPKqWvROz8Gi9Xs0rIyIyDsRP8jrjB90Goqy0qBjZ/qO11bBsDtxuCLwb/FERMRBXk90lGBbtg1fPKCniOuMmYtw71vfaskiImoMB3kDenR0F3HdcV6y6awP1+yCYXdi8x49781HRHS8iD/Z2RQWcRFRqODJTj/VFXG9efsJzbx+6Z2eg7e+/l5LFhERwEHutXP6dEJxdpqWnvJp738Hw+7EARZxEZEGHOQ+EBHkThmDAk1FXMPn5OOqp7/UkkVEkYuD3A+d2raEy2HDjN8MNJ31zfc/wrA7UeA6qGFlRBSJOMhNmDg6CVs1FXFd/a/lLOIiIr9wkJvUwlPElTtljJa8/jPy8NjizVqyiCgycJBrMqBrO7gcNlx6xqmms/75cSEMuxO7fjyqYWVEFO54HXkAHDpahaGz9BRxxcfFYHXmOF57TkS8jrw5tW/lLuJ65oZhprPKyqvROz0HSzbs1bAyIgpHHOQBNGFwVxRlpWnJmvRqAQy7E0cqWcRFRMfiIA+w6CiBy2HDZ/dfoCVvYOYiTJ23WksWEYUHDvJm0iuhDVwOGyaOTjKd9f43O2HYndiyl0VcRMSTnUHBIi4i8gdPdoaQuiKu1yaO0JLXOz0H81bu0JJFRNbDQR5EY/p2xrasNPTp0tZ01gPz18KwO3HwcKWGlRGRlXCQB1lUlCB/6vlYmaGniGvY7CW49tnlWrKIyBo4yENE53h3EVdG2gDTWSuKD8KwO7Fq+w8aVkZEoY6DPMRMOi9ZWxHX755ZBsPuREU1i7iIwhkHeQiqK+Jy/u9oLXmnT8/D3/K3aMkiotDDQR7CzujWHi6HDRf372I662/5W2HYndhzqFzDyogolJga5CLyexFZLyK1InLCtY2kx4u3nIU1meO0ZI3MXorUOfmorW3+1w8QUWCY3SNfB+AqAJ9rWAudRPvW7iKuJ68/03TW/p8rkJyeg6UbWcRFFA5MDXKl1EalFN8FoRn9Zkg3bUVcE19xF3EdreTJUCIra7Zj5CIyWUQKRKSgtLS0uZ42LNUVcX38l/O15A3IzMMD763RkkVEza/JQS4i+SKyroGPK3x5IqXUc0qpVKVUaufOnf1fMf0iuXNbuBw23Dyql+mseQUlMOxOFO5jEReR1WgpzRKRTwHcp5Tyqgkr0kuzAoFFXEThj6VZYa6uiOuV2/QVcc1fVaIli4gCy+zlh1eKSAmAUQCcIrJIz7LIX+f3cxdxGQmtTWf95d01MOxO/MAiLqKQxj7yMLavrBwj5i7VknVunwS8cftILVlE5B8eWolAXeLj4HLY8H/j+5vO+rLwAAy7E6t3/Gh+YUSkFffII0RldS36Tc/VlrdlzgTExnA/gKg5cY88wsXGuIu4PrpXTxFXv+m5+OfSrVqyiMgcDvIIM6i7u4jrvH7mr+V/bMkWGHYn9pWxiIsomDjII9Srt43A6syxWrJGzF2KUdlLWcRFFCQc5BGsQ+tYuBw2/P26FNNZuw+VIzk9B59s2md+YUTkEw5ywhUp3bUVcd368koYdifKq1jERdRcOMgJwK9FXEs1FXH1n5GH9A++05JFRCfHQU7H6O0p4rrh7J6ms95c8T0MuxNFpT9rWBkRNYbXkVOjjlbWYEAmi7iIQgWvIyeftYp1F3G9dMtZWvJ6p+dgweqdWrKI6Fcc5NSkC/t3wbasNHRrH2c6a8rbq2HYnfjxCIu4iHThICevREUJlk27GF+nX6wlL+WhJbjp319rySKKdBzk5JMu7dxFXPeN62c66/MtpTDsTnxXckjDyogiF092kt8qqmtw+nR9J0NZxEV0cjzZSdq1jHGfDF14z7la8vpNz8XTnxZqySKKJBzkZNqQxA5wOWwYlZxgOuvhvM0w7E6UllVoWBlRZOAgJ23emjwS387QU8R11tx8jHn4YxZxEXmBg5y0OqWNu4jr8WuGms7acfAoktNz8NmWUg0rIwpfHOQUEFcNS9RWxHXzv79mERfRSXCQU8DUFXHlTz1PS17/GXnIXLBOSxZROOEgp4Dr0yUeLocN16b2MJ316vLtMOxOFO8/rGFlROGB15FTs2IRF5H/eB05hYS6Iq4Xbz7h/0W/9E7PwUdrd2nJIrIqDnIKiosHnIptWWno1DbWdNY9b34Lw+7EoSNVGlZGZD0c5BQ0UVGCguljtRVxDX1oMSa+vFJLFpGVcJBT0NUVcf3pkr6ms5Zu2gfD7sSGXT9pWBmRNfBkJ4UU3UVcW+dOQIto7q9QeODJTrKEuiKuD+46R0te34xcPPd5kZYsolBlapCLyCMisklE1orIByLSQdO6KMKd2fMUuBw2nGWcYjorK2cTDLsT+39mEReFJ7N75EsADFJKDQGwBcA080si+tW7d56DbzQVcaXOycdFj33KIi4KO6YGuVJqsVKq2vPlVwASzS+J6FgdPUVcD189xHTWttLDSE7PwZeF+zWsjCg0aDvZKSIfAnhHKfV6I9+fDGAyAPTs2XP49u3btTwvRZaaWoXe6Tna8jbNHo+4FtHa8ogCqbGTnU0OchHJB3BaA9/KUEot8NwnA0AqgKuUF/8y8KoVMmvr3jKMfeJzLVm3nZuEzMsGaskiCiS/B7kXwTcDuBPAxUqpI948hoOcdFBKYeq8Nfjg251a8j67/wL0SmijJYsoEAIyyEVkPIDHAZyvlPK6/Z+DnHQ6UlmNgZmLtOVty0pDFIu4KAQF6jryJwHEA1giIqtF5F8m84h81jo2Bi6HDc/dOFxLXnJ6DvLW7daSRdQc+MpOCis1tQrDZi/BoaN6CrTWzByH9q1aaMkiMouv7KSIEB0lWDNzHL6apqmIa9Zi3PEadzootHGQU1g6rb27iOueC/uYzlq0fi8MuxOb9rCIi0ITD61Q2CuvqkH/GSziIuvjoRWKWHEt3EVc8/84Skte34xcvPjfYi1ZRDpwkFPEGN6rI1wOG1J6dDCdNfujDTDsThxgEReFAA5yijj/uftcrJp+iZas4XPycekTn7OIi4KKg5wiUkLblnA5bMi+arDprM17y5CcnoNlRSziouDgIKeI9j8jeqJw7gQtWdc/vwKG3YnyqhoteUTe4iCniBcTHQWXw4ZFfzpPS17/GXnIzt2oJYvIGxzkRB6nnxaP4uw0XDa0m+msZz/bBsPuxPcHvOqRIzKF15ETNYBFXBSKeB05kQ/qirj+9YdhWvKS03OwZMNeLVlEx+MgJzqJ8YO6oigrDW1izb+L0KRXC2DYnfipXE+hF1EdDnKiJkRHCdY/NB7L7BdpyRvy4GLc/eY3WrKIAA5yIq9169AKLocNd57f23SWc+1uGHYnNu8p07AyinQ82UnkB91FXIVzJyCGRVzUBJ7sJNKorojrnckjteT1ycjFK8tcWrIo8nCQE5lwdnICXA4bBndvbzpr5sL1LOIiv3CQE2nw4b2jUaCxiOvyJ/+LYBz2JGviICfSpJOniGv2bweZzlpbcghJ03Lw1bYDGlZG4Y6DnEizG0f20lbEdd1zX7GIi5rEQU4UAHVFXLlTxmjJ6z8jD48u2qwli8IPBzlRAA3o2g7F2WlIG3ya6awnPymEYXdix0EWcdGxeB05UTM5XFGNM2bqKeJqGROFjQ+NZxFXhOF15ERB1qalu4jrqevNF3FVVNciOT0HSzeyiIs4yImanW2Iu4grVsMrOSe+4i7iKmMRV0TjICcKgugowZa5E/DFAxdqyRv84GL8+Z3VWrLIejjIiYKoR8fWcDlsmDQmyXTWB9/uhGF3YuteFnFFGlMnO0VkNoArANQC2AfgFqXUrqYex5OdRCfSXcRVlJWGaJ4MDSuBOtn5iFJqiFIqBcBHADJN5hFFrLoirjcnna0lr3d6Dl7/aruWLAptpga5Uuqnel+2AcByCCKTzundCS6HDQO6tjOdNf0/62DYnTh4uFLDyihUmT5GLiJzRWQHgBvAPXIibXKnjMHXGRdryRo2ewl+98wyFnGFqSaPkYtIPoCGXpaWoZRaUO9+0wDEKaVmNpIzGcBkAOjZs+fw7dv5Kx+Rt15Z5sLMheu1ZM27YxRGJHXUkkXNq7Fj5Npe2SkivQA4lVJNVr/xZCeR76pratEnI1db3uY549EyxvybSlPzCcjJThHpW+/LywFsMpNHRI2rK+L66N7RWvJOn56HJ5Zs0ZJFwWX2GLlDRNaJyFoA4wBM0bAmIjqJQd3bozg7DWMHnmo66+9Lt8KwO7Hzx6MaVkbBwtIsIgsrK6/C4AcXa8mKj4vBmsxxLOIKYSzNIgpD8XEt4HLY8M//OdN0Vll5NZLTc/DJpn0aVkbNiYOcKAxcNrQbirLStGTd+vJKGHYnfq6o1pJHgcdBThQmoqMELocNn9+vp4hr0MxFuP/dNVqyKLA4yInCTM8EdxHXbeeaL+J6d1UJDLsThftYxBXKeLKTKIyxiCu88GQnUQSqK+J6faK+Iq63vv5eSxbpw0FOFAFG93UXcfXt0tZ01rT3v4Nhd+IHFnGFDA5yogiyZOr5+DpdTxHXmbOX4Npnl7OIKwRwkBNFmC7t4uBy2DDjNwNNZ60oPoikaTlYtf2ghpWRvzjIiSLUxNFJKJw7QUvW755ZDsPuREV1jZY88g0HOVEEC0QR1z+WbtWSRd7jICeiX4q4LurfxXTW40u2wLA7sfsQi7iaC68jJ6JjHDpahaGz9BRxJbSJxcqMS1jEpQmvIycir7Rv5S7i+vt1KaazDhyudBdxbWYRVyBxkBNRg65I6a6viOsldxHXkUoWcQUCBzkRNaquiOvT+y7QkjcwcxHs89dqyaJfcZATUZOMTm3gcthw86heprPeXrkDht2JotKfNayMAJ7sJCIfHa2swYBMfUVc27LSeDLUSzzZSURatIp1F3G9ctsILXnJ6TmYt3KHlqxIxUFORH45v19nuBw29EpobTrrgflrYdid+PEIi7j8wUFORKZ8dv+FWKGpiCvloSW48cUVLOLyEQc5EZl2qqeIKyNtgOmsL7buR9K0HHz7/Q8aVhYZOMiJSJtJ5yVjyxw9RVxXPr0Mht2JyupaLXnhjIOciLSKjXEXcS2851wtef2m5+KpTwq1ZIUrDnIiCoghiR1QnJ2GMX07mc56ZNFmGHYn9v5UrmFl4YeDnIgCRkTw2sSzsSZznJa8s7OWYmTWUtTW8mRofRzkRBRw7Vu7i7ieuHao6aw9P5UjOT0Hn28p1bCy8MBBTkTN5sozE7W9K9FN//4aht2Jo5V8VyIOciJqVnXvSvTxX87XkjcgMw8ZH3ynJcuqtAxyEblPRJSImD+rQUQRIblzW7gcNlx/dk/TWW+s+B6G3YltEVrEZXqQi0gPAGMBfG9+OUQUabKuHIwND12qJeuixz6DYXdG3MlQHXvkTwB4AEBk/eSISJvWsTFwOWx46daztOQlp+fg/W9KtGRZgalBLiKXA9iplFrjxX0ni0iBiBSUlvJsMxGd6MLTu6A4Ow3d2seZzpo6bw0MuxOHjlRpWFloa7KPXETyAZzWwLcyAKQDGKeUOiQiLgCpSqn9TT0p+8iJqCl7DpVjZPZSLVkXnN4ZL9+qp3Y3mBrrI/f7jSVEZDCApQCOeG5KBLALwAil1J6TPZaDnIi89fSnhXg4b7OWrIX3nIshiR20ZAWD9kHewBO4wD1yIgqAyupa9Jueqy1vy5wJiI2x3tXXfIcgIrKsuiKuBXfrK+J65tMiLVmhQNsgV0oZ3uyNExH5a2gPdxHX2UkdTWf9NW8TDLsT+8KgiIt75ERkKSKCd+4YhdWZY7XkjchaitF//djS155zkBORJXVoHQuXw4ZHf2++iKvkh6NITs/Bl4XWPKjAQU5Elnb1cH1FXDe8sMKSRVwc5ERkeXVFXPlT9RVxPbhwvZas5sBBTkRho08XdxHXtak9TGe9vMwFw+6Ea/9hDSsLLG3XkfuC15ETUaAdqazGwMxF2vKKs9MgItry/MHryIkootQVcb1w0wlzzy9J03KwYPVOLVm6cZATUVi7ZOCpKM5OQ+f4lqazpry92l3EdTS0irg4yIko7IkIVmZcguXTLtKSN3TWYtz+ykotWTpwkBNRxOjavhVcDhumju1nOit/4z4YdifW7TykYWXm8GQnEUWkiuoanD49T1tecxRx8WQnEVE9LWOi4XLY8MFd52jJ6zc9Fy98sU1Llq84yIkoop3Z8xQUZ6dheK9TTGfNcW6EYXeitKxCw8q8x0FORBFPRDD/j+fgmxl6irjOmpuPCx/9tNmKuDjIiYg8OrZxF3E9/LshprOK9x9GcnoOlhUFvoiLg5yI6DjXnNVDWxHX9c+7i7jKqwJXxMVBTkTUgLoiriV/Pk9LXv8ZebjrjVU4XFGtJa8+DnIiopPoe2o8irPTcNWw7qazcr7bg5WugxpWdSwOciKiJogIHr8mBetnXWo6KyZK/9jlICci8lKblu4irmdvHO53RlQAChQ5yImIfHTpGadhW1YaOrRu4fuDOciJiEJDVJRgdeY4LLP7WMQVgEvLOciJiEzo1sFdxPW/F/cN2ho4yImINJg6th82zR4flOfmICci0iSuhbuIa/4fRzXr83KQExFpNrxXRxRnp2FoYvsTvheI9hUOciKiABARLLhnNFZNv+SY26MDcP1hjPZEIiL6RULblnA5bJhXsAPzVu7ACKOj9ufgICciagbXpPbANak9ApJt6tCKiDwoIjtFZLXnI03XwoiIyDs69sifUEo9qiGHiIj8wJOdREQWp2OQ3yMia0Xk3yLS6JveichkESkQkYLS0lINT0tERAAgSp38qkYRyQdwWgPfygDwFYD9cF8aORtAV6XUbU09aWpqqiooKPB9tUREEUxEVimlUo+/vclj5EqpS5q6j+cJngfwkR9rIyIiE8xetdK13pdXAlhnbjlEROQrs1etPCwiKXAfWnEBuMPsgoiIyDdNHiMPyJOKlALY7ufDO8F9XD6ScJsjA7c5MpjZ5l5Kqc7H3xiUQW6GiBQ0dLA/nHGbIwO3OTIEYpt5HTkRkcVxkBMRWZwVB/lzwV5AEHCbIwO3OTJo32bLHSMnIqJjWXGPnIiI6uEgJyKyOEsNchEZLyKbRaRQROzBXo8OItJDRD4RkY0isl5Epnhu7ygiS0Rkq+fPU+o9ZprnZ7BZRC4N3urNEZFoEflWRD7yfB3W2ywiHUTkPRHZ5PnvPSoCtvnPnv+v14nIWyISF27b7CkM3Cci6+rd5vM2ishwEfnO871/iIj37wmnlLLEB4BoAEUAkgHEAlgDYGCw16Vhu7oCGOb5PB7AFgADATwMwO653Q7gr57PB3q2vSWAJM/PJDrY2+Hntk8F8CaAjzxfh/U2A3gFwO2ez2MBdAjnbQbQHUAxgFaer+cBuCXcthnAeQCGAVhX7zaftxHA1wBGARAAuQAmeLsGK+2RjwBQqJTappSqBPA2gCuCvCbTlFK7lVLfeD4vA7AR7r8AV8D9Fx+eP3/r+fwKAG8rpSqUUsUACuH+2ViKiCQCsAF4od7NYbvNItIO7r/wLwKAUqpSKfUjwnibPWIAtBKRGACtAexCmG2zUupzAAePu9mnbfT0VrVTSi1X7qn+ar3HNMlKg7w7gB31vi7x3BY2RMQAcCaAFQBOVUrtBtzDHkAXz93C5efwNwAPAKitd1s4b3MygFIAL3kOJ70gIm0QxtuslNoJ4FEA3wPYDeCQUmoxwnib6/F1G7t7Pj/+dq9YaZA3dLwobK6dFJG2AOYD+JNS6qeT3bWB2yz1cxCR3wDYp5Ra5e1DGrjNUtsM957pMADPKKXOBHAY7l+5G2P5bfYcF74C7kMI3QC0EZE/nOwhDdxmqW32QmPbaGrbrTTISwDUfwvqRLh/TbM8EWkB9xB/Qyn1vufmvXU1wZ4/93luD4efw7kALhcRF9yHyC4SkdcR3ttcAqBEKbXC8/V7cA/2cN7mSwAUK6VKlVJVAN4HcA7Ce5vr+LqNJZ7Pj7/dK1Ya5CsB9BWRJBGJBXAdgIVBXpNpnjPTLwLYqJR6vN63FgK42fP5zQAW1Lv9OhFpKSJJAPrCfZLEMpRS05RSiUopA+7/jh8rpf6A8N7mPQB2iMjpnpsuBrABYbzNcB9SGSkirT3/n18M9zmgcN7mOj5to+fwS5mIjPT8rG6q95imBfuMr49nh9PgvqqjCEBGsNejaZtGw/0r1FoAqz0faQASACwFsNXzZ8d6j8nw/Aw2w4cz26H4AeAC/HrVSlhvM4AUAAWe/9b/AXBKBGzzLACb4H7TmdfgvlojrLYZwFtwnwOognvPeqI/2wgg1fNzKgLwJDyvvPfmgy/RJyKyOCsdWiEiogZwkBMRWRwHORGRxXGQExFZHAc5EZHFcZBT2PO0Dt7l+bybiLwX7DUR6cTLDynseTpsPlJKDQr2WogCISbYCyBqBg4AvUVkNdwv0BiglBokIrfA3TAXDWAQgMfgrpe9EUAFgDSl1EER6Q3gKQCdARwBMEkptam5N4KoMTy0QpHADqBIKZUC4P7jvjcIwPVw16XOBXBEuUutlsP9MmnA/Wa59yqlhgO4D8DTzbFoIm9xj5wi3SfK3QNfJiKHAHzouf07AEM8rZTnAHi33hu2tGz+ZRI1joOcIl1Fvc9r631dC/ffjygAP3r25olCEg+tUCQog/tt9Hym3N3wxSLye8DdVikiQ3UujsgsDnIKe0qpAwC+9Lw57iN+RNwAYKKIrAGwHmHwFoMUXnj5IRGRxXGPnIjI4jjIiYgsjoOciMjiOMiJiCyOg5yIyOI4yImILI6DnIjI4v4fTmj/U9Trp1sAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from matplotlib import pyplot as plt\n", "df.plot(x='time',y='h_t')^\n", "\n", "fig = plt(df[])\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import plotly.express as px\n", "from plotly.subplots import make_subplots\n", "import plotly.graph_objects as go\n", "import plotly.io as pio\n", "pio.renderers.default = \"vscode\"\n", "\n", "\n", "fig1 = make_subplots(3,1,subplot_titles=('Height','Volume','Fluxes'))\n", "\n", "fig1.add_trace(go.Scatter(x=df['time'],y=df['h_t'],name='height',mode='lines+markers',marker=dict(size=5)),row=1,col=1)\n", "fig1.add_trace(go.Scatter(x=df['time'],y=df['V_t'],name='volume',mode='lines+markers',marker=dict(size=5)),row=2,col=1)\n", "fig1.add_trace(go.Scatter(x=df['time'],y=df['influx'],name='influx',mode='lines+markers',marker=dict(size=5)),row=3,col=1)\n", "fig1.add_trace(go.Scatter(x=df['time'],y=df['outflux'],name='outlfux',mode='lines+markers',marker=dict(size=5)),row=3,col=1)\n", "\n", "fig1.update_xaxes(title_text = 'time',row=1,col=1)\n", "fig1.update_xaxes(title_text = 'time',row=2,col=1)\n", "fig1.update_xaxes(title_text = 'time',row=3,col=1)\n", "fig1.update_yaxes(title_text = 'h(t)',row=1,col=1)\n", "fig1.update_yaxes(title_text = 'V(t)',row=2,col=1)\n", "fig1.update_yaxes(title_text = 'Q(t)',row=3,col=1)\n", "\n", "fig1.update_layout(height=700)\n", "\n", "fig2 = px.scatter(df,x='time',y='h_t',animation_frame='time')\n", "fig2.update_xaxes(range=[0,100])\n", "fig2.update_yaxes(range=[0,5])\n", "fig1.show()\n", "fig2.show('notebook')" ] } ], "metadata": { "interpreter": { "hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd" }, "kernelspec": { "display_name": "Python 3.8.13 ('Georg_DT_Slot3')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }