{ "cells": [ { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from numpy.polynomial import Polynomial\n", "from numpy.polynomial.polynomial import polyval\n", "from Turbinen_class_file import Francis_turbine_class\n", "from mpl_toolkits import mplot3d\n", "import matplotlib.pyplot as plt\n", "\n", "#importing pressure conversion function\n", "import sys\n", "import os\n", "current = os.path.dirname(os.path.realpath('messy.ipynb'))\n", "parent = os.path.dirname(current)\n", "sys.path.append(parent)\n", "from functions.pressure_conversion import pressure_conversion\n", "\n", "%matplotlib widget\n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# create turbine object\n", "T1 = Francis_turbine_class()\n", "csv = T1.raw_csv\n", "\n", "T1.extract_csv()\n", "ps_raw = T1.raw_ps_vec\n", "n_ps_raw = np.size(T1.raw_ps_vec)\n", "LAs_raw = T1.raw_LA_vec\n", "n_LAs_raw = np.size(T1.raw_LA_vec)\n", "Qs_raw = T1.raw_Qs_mat\n", "\n", "Q_fun = T1.get_Q_fun()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# interpolate Qs for more LAs\n", "\n", "n_LA_int = 2001\n", "\n", "LA_int = np.linspace(0,1,n_LA_int,endpoint=True)\n", "\n", "Q_int = np.reshape(Q_fun(ps_raw,LA_int),[n_LA_int,n_ps_raw])" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# fit a polynomial to the data from Qs_Raw\n", " # receive a coefficient matrix \n", "poly_deg = 3\n", "fit_coeff_mat = np.empty([n_LA_int,poly_deg+1])\n", "fit_weights = np.ones_like(ps_raw)\n", "fit_weights[0] = 20 # put extra weight on the p=0 => Q=0 data\n", "\n", "for i in range(n_LA_int):\n", " x = ps_raw\n", " y = Q_int[i,:]\n", " fit_coeff_mat[i,:] = np.polynomial.polynomial.Polynomial.fit(x,y,poly_deg,w=fit_weights).convert().coef\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "p_ext_min = 0\n", "p_ext_max = 2.5*np.max(ps_raw)\n", "n_p_ext = 200\n", "\n", "p_ext = np.linspace(p_ext_min,p_ext_max,n_p_ext)\n", "\n", "Qs_ext = np.zeros([n_LA_int,n_p_ext])\n", "\n", "for i in range(n_LA_int):\n", " Qs_ext[i,:] = polyval(p_ext,fit_coeff_mat[i,:])\n", "\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'LA = 0.05')" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a89d999414644e6a8d81f1e32c31e49b", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNXElEQVR4nO3dd3wVVf7/8fdNL5BGIIUECB3pBOkoSgexoCuWBQXxKyuKwLquiIoVfrqsawV1BZGVRUQQURDIKkUFFGJCkSotlISQAGmQcu+d3x8h0ZgAISSZm3tfz8djHklOzsz93GHgvjkzc8ZiGIYhAAAAuAw3swsAAABA9SIAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAAIAALgYAiAAAICLIQACAAC4GAIgANPMmzdPFotFW7duLfc6nTp1ksVi0cyZM6uwssv75JNP1KFDB/n4+CgyMlITJ05UdnZ2udd/66231LJlS3l7eysmJkbPP/+8CgoKSvQp2j9lLSkpKZX9lgC4EAIggBojMTFRCQkJkqQ5c+aYVseCBQt0991369prr9XXX3+tadOmad68eRo+fHi51n/55Zf12GOPafjw4Vq9erUefvhhTZ8+XePHjy+z/4cffqhNmzaVWOrUqVOZbwmAi/EwuwAAKK8PPvhAkjR06FCtWLFCGzduVI8ePaq1BpvNpr/97W8aMGCA/v3vf0uSbrjhBtWuXVv33nuvvv76aw0ePPii66enp+ull17Sgw8+qOnTp0uS+vTpo4KCAj399NOaOHGirrnmmhLrtGnTRp07d666NwXA5TACCKBGyM3N1X//+1/FxsbqX//6lyRp7ty51V7H5s2blZycrNGjR5do/9Of/qRatWrp888/v+T6q1atUm5ubqn1R48eLcMwtGzZssouGQBKIQACqBGWLl2qM2fOaMyYMWrWrJl69eqlRYsWlfu6O6vVWq7FMIxLbmfnzp2SpHbt2pVo9/T0VMuWLYt/f7n127ZtW6I9IiJCoaGhZa5/0003yd3dXSEhIRo+fPhlXwMALocACKBGmDNnjnx8fHTPPfdIkh544AFlZ2fr008/Ldf6np6e5Vo++uijS24nPT1dkhQSElLqdyEhIcW/v9T63t7e8vf3v+z64eHhmjp1qj744AOtXbtWL774orZs2aJu3bpp27Zt5XnbAFAmrgEE4PAOHTqktWvX6u6771ZQUJCkwlOuEyZM0Ny5czVmzJjLbmPLli3leq2YmJhy9bNYLFfUXt4+v//doEGDNGjQoOKfr7vuOg0dOlRt27bVs88+qy+++KJctQLAHxEAATi8uXPnyjAM3XHHHTp79mxx+80336wFCxZoz549atmy5SW30aFDh3K9lru7+yV/X3T3bXp6usLCwkr87vTp02WODP5x/dzcXJ07d05+fn6l1o+Njb3k+o0aNVKvXr20efPmS/YDgEvhFDAAh2a32zVv3jxJ0vDhwxUcHFy8LFiwQFL5bgaprFPARdfu7dixo0S71WrVnj171KZNmwqtn5KSorS0tMuuL0mGYcjNjX++AVQcI4AAHNrq1at17NgxjR8/XnfccUep3z/yyCOaP3++pk+fLg+Pi/+TVlmngLt27aqIiAjNmzdPI0aMKG7/7LPPlJ2dfdm5AAcNGiQfHx/NmzdPXbt2LW4vmvT51ltvveT6hw4d0g8//KB+/fpd/s0AwEUQAAGY7ttvv9Xhw4dLtQ8ZMkRz5syRh4eHnnrqKUVGRpbq89BDD2nChAlasWKFbrnllou+RmXNo+fu7q5XX31VI0eO1EMPPaS7775b+/fv1xNPPKH+/fuXuGZv/fr16tu3r5599lk9++yzkgpv9Hj66af1zDPPKCQkRAMGDNCWLVv03HPPaezYsSXmAOzXr5+uu+46tWvXTgEBAdqxY4deffVVWSwWvfjii5XyfgC4KAMATPLhhx8aki66bNmyxfDy8jJuvfXWi27jzJkzhq+vrzFs2LBqrNww/vvf/xrt2rUzvLy8jPDwcGPChAlGVlZWiT5r1641JBnTpk0rtf4bb7xhNG/e3PDy8jIaNGhgTJs2zcjPzy/RZ+LEicY111xj1K5d2/Dw8DAiIyONP//5z8bevXur8q0BcAEWw7jMpFcAAABwKlxFDAAA4GIIgAAAAC6GAAgAAOBiCIAAAAAuhgAIAADgYgiAAAAALoYACAAA4GKc5kkgGzZs0D/+8Q/Fx8crOTlZn3/++SUfqbR06VLNnj1biYmJysvLU+vWrfXcc89p4MCB5X5Nu92uEydOqHbt2rJYLJXwLgAAQFUzDENZWVmKjIx02edqO00AzMnJUfv27TV69Gjdfvvtl+2/YcMG9e/fX9OnT1dQUJA+/PBDDRs2TD/++KM6duxYrtc8ceKEoqOjr7Z0AABggqNHjyoqKsrsMkzhlE8CsVgslx0BLEvr1q01YsSI4md2Xk5GRoaCgoJ09OhRBQQEVKBSAABQ3TIzMxUdHa2zZ88qMDDQ7HJM4TQjgFfLbrcrKytLISEh5V6n6LRvQEAAARAAgBrGlS/fIgBe8M9//lM5OTm68847L9onLy9PeXl5xT9nZmZWR2kAAACVyjWvfPyDhQsX6rnnntOiRYtUr169i/abMWOGAgMDixeu/wMAADWRywfARYsW6YEHHtCnn36qfv36XbLvlClTlJGRUbwcPXq0mqoEAACoPC59CnjhwoUaM2aMFi5cqKFDh162v7e3t7y9vauhMgAAgKrjNAEwOztbv/76a/HPhw4dUmJiokJCQtSgQQNNmTJFx48f1/z58yUVhr9Ro0bpjTfeULdu3ZSSkiJJ8vX1ddk7ggAAgGtwmlPAW7duVceOHYvn8Js8ebI6duxYPKVLcnKykpKSivu/9957slqtGj9+vCIiIoqXxx57zJT6AQAAqotTzgNYXTIzMxUYGKiMjAymgQEAoIbg89uJRgABAABQPgRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAxBEAAAOBwvt6RrAfnb9XaPalml+KUCIAAAMDhLEs8rrhdJ7X1yGmzS3FKBEAAAOBQsvOsWrf3lCRpaNtIk6txTgRAAADgUL7ZfVJ5VrtiQv3VKqK22eU4JQIgAABwKCu2J0uShraNkMViMbka50QABAAADiM7z6p1+wpP/w5pG2FyNc6LAAgAABzGN7tPKt9qV2NO/1YpAiAAAHAYRad/h3D6t0oRAAEAgEPIzC0oPv07tB2nf6sSARAAADiEuF8KT/82rVdLLcM5/VuVCIAAAMAhfLn9hCRpWLtITv9WMQIgAAAw3emcfH2/P02SdFN7Tv9WNQIgAAAw3aqdKbLaDbWODFCTurXMLsfpEQABAIDpvtx24fRvex79Vh0IgAAAwFSpmbnafChdUuHTP1D1CIAAAMBUK3YkyzCkTg2CFB3iZ3Y5LoEACAAATMXp3+pHAAQAAKY5evqcfk46K4uF07/ViQAIAABMs2JH4aPfusXUUb0AH5OrcR0EQAAAYJqi07/M/Ve9CIAAAMAUB05l65cTmXJ3s2hwGwJgdSIAAgAAU3y1rfD0b6+moQrx9zK5GtdCAAQAANXOMAwt33ZcEnf/moEACAAAqt2elCwdOJUjL3c3DWgdZnY5LocACAAAql3RzR99WtRVgI+nydW4HgIgAACoVoZh6MvtTP5sJgIgAACoVtuOZejo6fPy9XRX31b1zC7HJREAAQBAtSo6/dvvmjD5eXmYXI1rIgACAIBqY7MbWl707N92zP1nFgIgAACoNhsPpOlUVp6C/DzVpwWnf81CAAQAANXm84TCuf+Gto2QlwcxxCzseQAAUC3O59u0emeKJOm2jvVNrsa1EQABAEC1iNt9Ujn5NkUF+yq2YbDZ5bg0AiAAAKgWyy6c/r2tY31ZLBaTq3FtBEAAAFDl0rPztH7fKUnSLR04/Ws2AiAAAKhyX21Pls1uqF1UoJrWq2V2OS6PAAgAAKrcssTC07+3MvrnEAiAAACgSh1Oy1FC0lm5u1l49q+DIAACAIAqVTT617NpqOrW9ja5GkgEQAAAUIUMw/jd3b+M/jkKAiAAAKgyiUfP6nD6Ofl6umvANeFml4MLCIAAAKDKfJF4QpI0sHWY/L09TK4GRZwmAG7YsEHDhg1TZGSkLBaLli1bdtl11q9fr9jYWPn4+Khx48Z69913q75QAABcRIHNri+3FQbAW3n0m0NxmgCYk5Oj9u3b6+233y5X/0OHDmnIkCHq3bu3EhIS9NRTT2nChAlasmRJFVcKAIBr+H5/mtJz8hVay0u9moaaXQ5+x2nGYgcPHqzBgweXu/+7776rBg0a6PXXX5cktWrVSlu3btXMmTN1++23V1GVAAC4js8v3PwxrH2kPNydZszJKbjsn8amTZs0YMCAEm0DBw7U1q1bVVBQYFJVAAA4h+w8q9bsSpFU+OxfOBanGQG8UikpKQoLCyvRFhYWJqvVqrS0NEVERJRaJy8vT3l5ecU/Z2ZmVnmdAADURKt3pii3wK7Gof5qWz/Q7HLwBy47AihJFoulxM+GYZTZXmTGjBkKDAwsXqKjo6u8RgAAaqIlPx+TVDj6d7HPVZjHZQNgeHi4UlJSSrSlpqbKw8NDderUKXOdKVOmKCMjo3g5evRodZQKAECNcuzMOW08kC6LRRoeG2V2OSiDy54C7t69u7788ssSbWvWrFHnzp3l6elZ5jre3t7y9uYRNgAAXMrSnwtv/ujRpI7qB/maXA3K4jQjgNnZ2UpMTFRiYqKkwmleEhMTlZSUJKlw9G7UqFHF/ceNG6cjR45o8uTJ2r17t+bOnas5c+bo8ccfN6N8AACcgmEY+iy+8PTvHYz+OSynGQHcunWrbrjhhuKfJ0+eLEm67777NG/ePCUnJxeHQUmKiYnRypUrNWnSJL3zzjuKjIzUm2++yRQwAABchS2Hzyjp9DnV8vbQwNY8+s1ROU0A7NOnT/FNHGWZN29eqbbrr79eP//8cxVWBQCAa/ksvvD6+KFtI+Tn5TQxw+k4zSlgAABgrnP5Vq3YnixJuqMzp38dGQEQAABUilU7U5STb1PDOn7q3DDY7HJwCQRAAABQKYpv/ugUxdx/Do4ACAAArhpz/9UsBEAAAHDVmPuvZiEAAgCAq/L7uf9u78ToX01AAAQAAFelaO4/fy93DWrD3H81AQEQAABcleK5/9ox919NQQAEAAAVVmLuv9hok6tBeREAAQBAhRXN/dcgxE/XNmLuv5qCAAgAACqseO6/WOb+q0kIgAAAoEKK5v6TpOGd6ptcDa4EARAAAFTI4q2Fo389mtRRVLCfydXgShAAAQDAFbPZDS3eWnj3711dGphcDa4UARAAAFyxDftP6URGroL8PDXgmjCzy8EVIgACAIAr9slPSZKk2zrWl4+nu8nV4EoRAAEAwBVJzcrVN7tTJUl3Xcvp35qIAAgAAK7I0p+Py2o31LFBkFqE1za7HFQAARAAAJSbYRhatKXw5o+7Gf2rsQiAAACg3H48dFqH0nLk7+Wuoe0izC4HFUQABAAA5VY0+ndzh0j5e3uYXA0qigAIAADKJeNcgVbuSJbEzR81HQEQAACUy7LE48qz2tUyvLbaRQWaXQ6uAgEQAABclmEYWnhh7r+7ro2WxWIxuSJcDQIgAAC4rO3HMrQnJUteHm66rWOU2eXgKhEAAQDAZX1y4eaPIW3CFejnaXI1uFoEQAAAcEk5eVYtTzwuSbqrCzd/OAMCIAAAuKQV25OVk29Tozp+6hoTYnY5qAQEQAAAcEmfbCm8+WPEtQ24+cNJEAABAMBF7U7O1M9JZ+XhZtHtsfXNLgeVhAAIAAAu6uPNRyRJA1qHqV5tH5OrQWUhAAIAgDJl51m1LKHw5o8/d2tocjWoTARAAABQps8Tjisn36Ymdf3VvXEds8tBJSIAAgCAUgzD0IILp3/v7dqQmz+cDAEQAACUEn/kjPakZMnH0023x/LkD2dDAAQAAKUU3fxxc/tIBfry5A9nQwAEAAAlpGfnaeWOFEnc/OGsCIAAAKCExfHHlG+zq11UoNpFBZldDqoAARAAABSz2w3998fCJ3/8uSujf86KAAgAAIpt2H9KSafPKcDHQ8PaR5pdDqoIARAAABT7eHPh6N/tsVHy9XI3uRpUFQIgAACQJB0/e17f7jkpiZs/nB0BEAAASJIW/pgkuyH1aFJHTerWMrscVCECIAAAUL7Vrk+2HJXE6J8rIAACAACt2ZWitOw81avtrf7XhJldDqoYARAAABQ/+eOua6Pl6U48cHb8CQMA4OJ2J2dq88HTcnez6K4uDcwuB9XAqQLgrFmzFBMTIx8fH8XGxuq77767ZP8FCxaoffv28vPzU0REhEaPHq309PRqqhYAAMfw0cbDkqRBrcMVGeRrbjGoFk4TABctWqSJEydq6tSpSkhIUO/evTV48GAlJSWV2f/777/XqFGj9MADD+iXX37R4sWLtWXLFo0dO7aaKwcAwDxncvL1ecJxSdLono3MLQbVxmkC4GuvvaYHHnhAY8eOVatWrfT6668rOjpas2fPLrP/5s2b1ahRI02YMEExMTHq1auXHnroIW3durWaKwcAwDyfbDmqPKtdbeoHKLZhsNnloJo4RQDMz89XfHy8BgwYUKJ9wIAB2rhxY5nr9OjRQ8eOHdPKlStlGIZOnjypzz77TEOHDq2OkgEAMJ3VZtd/Nh2WJN3fI0YWi8XcglBtnCIApqWlyWazKSys5G3rYWFhSklJKXOdHj16aMGCBRoxYoS8vLwUHh6uoKAgvfXWWxd9nby8PGVmZpZYAACoqdbsOqkTGbmq4++lm9pFmF0OqpFTBMAif/yfi2EYF/3fzK5duzRhwgQ9++yzio+P16pVq3To0CGNGzfuotufMWOGAgMDi5fo6OhKrR8AgOo074fDkqR7ujaQjyfP/XUlThEAQ0ND5e7uXmq0LzU1tdSoYJEZM2aoZ8+e+tvf/qZ27dpp4MCBmjVrlubOnavk5OQy15kyZYoyMjKKl6NHj1b6ewEAoDrsPJ6hnw6floebhSd/uCCnCIBeXl6KjY1VXFxcifa4uDj16NGjzHXOnTsnN7eSb9/dvfB/P4ZhlLmOt7e3AgICSiwAANRERVO/DGkbobAAH3OLQbVzigAoSZMnT9YHH3yguXPnavfu3Zo0aZKSkpKKT+lOmTJFo0aNKu4/bNgwLV26VLNnz9bBgwf1ww8/aMKECerSpYsiIyPNehsAAFS59Ow8fbHthCTpfqZ+cUkeZhdQWUaMGKH09HS98MILSk5OVps2bbRy5Uo1bFg4rJ2cnFxiTsD7779fWVlZevvtt/XXv/5VQUFBuvHGG/XKK6+Y9RYAAKgWC39KUr7VrvZRgeoYHWR2OTCBxbjY+U5cVmZmpgIDA5WRkcHpYABAjVBgs6vXK9/qZGae/jWivW7rGGV2SdWOz28nOgUMAAAub9XOFJ3MzFPd2t4a2pZLnlwVARAAABcy78LNH/d2bSAvD2KAq+JPHgAAF7H92FnFHzkjT3eL7unawOxyYCICIAAALuLDCxM/39QuUvVqM/WLKyMAAgDgApIzzuvLC1O/jGbqF5dHAAQAwAXM++GwrHZD3RqHqF1UkNnlwGQEQAAAnFxWboH++2PhXLgP9m5scjVwBARAAACc3KItR5WVZ1WTuv66oUU9s8uBAyAAAgDgxAps9uKbP8b2biw3N4u5BcEhEAABAHBiK3ck6/jZ8wqt5aXbOtY3uxw4CAIgAABOyjAM/fu7g5KkUd0bycfT3eSK4CgIgAAAOKnNB09r5/FM+Xi66c/dGppdDhwIARAAACdVNPp3R2yUQvy9TK4GjoQACACAE/o1NUvf7kmVxSI90IupX1ASARAAACf0wXeHJEn9W4UpJtTf5GrgaAiAAAA4mVNZeVqacFyS9H/XMfqH0giAAAA4mf9sOqx8q10dooMU2zDY7HLggAiAAAA4kfP5Nv1n8xFJhaN/FgsTP6M0AiAAAE5kcfxRnTlXoOgQXw1sHW52OXBQBEAAAJxEgc2u99YXTv0ytldjufPYN1wEARAAACfx5bYTxY99G3FttNnlwIERAAEAcAJ2u6FZ6w5Ikkb3jOGxb7gkAiAAAE4gbvdJ/ZqardreHhrZnce+4dIIgAAA1HCGYWjW2l8lSSO7N1SAj6fJFcHREQABAKjhNh5I17ZjGfL2cNOYXjFml4MagAAIAEAN986F0b+7ro1WaC1vk6tBTUAABACgBktIOqONB9Ll4WbRgzz2DeVEAAQAoAYruvP3lg71FRXsZ3I1qCkIgAAA1FD7TmYpbtdJWSzSX/ow+ofyIwACAFBDzb4w+jfwmnA1rVfb5GpQkxAAAQCogY6ePqfl205Ikh6+oYnJ1aCmIQACAFADvbfhgGx2Q72bhapdVJDZ5aCG8ajuFwwJCbmi/haLRT///LMaNmRWcwAAJCk1K1efbj0mSXq4T1OTq0FNVO0B8OzZs3r99dcVGBh42b6GYejhhx+WzWarhsoAAKgZ3lt/UPlWuzo2CFK3xlc2sAJIJgRASbrrrrtUr169cvV99NFHq7gaAABqjtSsXH28+YgkaWK/5rJYLCZXhJqo2gOg3W6/ov5ZWVlVVAkAADXPe+sPKu/C6N91zULNLgc1FDeBAABQQ/x+9O+xvs0Y/UOFmRoAP/roI61YsaL45yeeeEJBQUHq0aOHjhw5YmJlAAA4nvcvjP51iA7S9c3rml0OajBTA+D06dPl6+srSdq0aZPefvttvfrqqwoNDdWkSZPMLA0AAIeSmpWrj38suvaP0T9cHVNuAily9OhRNW1aePv6smXLdMcdd+j//u//1LNnT/Xp08fM0gAAcCjvrz+o3AJG/1A5TB0BrFWrltLT0yVJa9asUb9+/SRJPj4+On/+vJmlAQDgMBj9Q2UzdQSwf//+Gjt2rDp27Kh9+/Zp6NChkqRffvlFjRo1MrM0AAAcBqN/qGymjgC+88476t69u06dOqUlS5aoTp06kqT4+HjdfffdZpYGAIBDOJWVx+gfKp3FMAyjul/0/fff180336zw8PDqfulKlZmZqcDAQGVkZCggIMDscgAATujlFbv07+8OqX10kJY93IMAWAn4/DZpBHDhwoVq1KiRunbtqunTp2vXrl1mlAEAgEM7lZWn/2xm9A+Vz5QAuHbtWiUnJ+vRRx9VYmKiunfvriZNmmjy5Mlat27dFT8tBAAAZ/T+hgPKLbCrfXSQ+nDtHyqRadcABgcH689//rM+/fRTnTp1Su+8845yc3M1cuRI1a1bV6NGjdJnn32mnJwcs0oEAMA0qZm5jP6hyjjEo+C8vLw0aNAgzZo1S0ePHtXq1avVqFEjvfjii3rttdfMLg8AgGr31re/Kreg8Jm/jP6hspkeADMyMkq1de7cWS+88IK2bdumJ598stzbmjVrlmJiYuTj46PY2Fh99913l+yfl5enqVOnqmHDhvL29laTJk00d+7cK34PAABUpqT0c1r4U5Ik6W8DWzD6h0pnSgB85pln1KBBA82cOVNRUVF69tlnL9rX09OzXNtctGiRJk6cqKlTpyohIUG9e/fW4MGDlZSUdNF17rzzTn3zzTeaM2eO9u7dq4ULF6ply5ZX/H4AAKhMr/9vn6x2Q72bhapHk1Czy4ETMmUamIEDB2rXrl366aef5O3treuuu047d+68qm127dpVnTp10uzZs4vbWrVqpVtvvVUzZswo1X/VqlW66667dPDgQYWEhFToNbmNHABQ2famZGnQGxtkGNLyR3qqXVSQ2SU5HT6/TRoBtFgsat++vSIiIhQSEqK6da/u2ob8/HzFx8drwIABJdoHDBigjRs3lrnO8uXL1blzZ7366quqX7++mjdvrscff/ySj6DLy8tTZmZmiQUAgMr0zzV7ZRjSoNbhhD9UGVMCYGxsrL766itJheGtoKDgqraXlpYmm82msLCwEu1hYWFKSUkpc52DBw/q+++/186dO/X555/r9ddf12effabx48df9HVmzJihwMDA4iU6Ovqq6gYA4PcSks5oza6TcrNIjw9sbnY5cGKmBMCXX365+HsvLy+tW7euUrb7x4tkDcO46IWzdrtdFotFCxYsUJcuXTRkyBC99tprmjdv3kVHAadMmaKMjIzi5ejRo5VSNwAAkjRzzV5J0vBOUWpar7bJ1cCZeZhdgCR5eHgoOzu71ATQ5T0vHxoaKnd391KjfampqaVGBYtERESofv36CgwMLG5r1aqVDMPQsWPH1KxZs1LreHt7y9vbu1w1AQBwJX74NU0//JouT3eLHutb+jMIqEymTgNz6NAhDR06VP7+/goMDFRwcLCCg4MVFBSk4ODgcm/Hy8tLsbGxiouLK9EeFxenHj16lLlOz549deLECWVnZxe37du3T25uboqKiqrYGwIAoAIMw9CrqwtH/+7t2lDRIX4mVwRnZ+oI4L333itJmjt3rsLCwq5qnqPJkydr5MiR6ty5s7p37673339fSUlJGjdunKTC07fHjx/X/PnzJUn33HOPXnzxRY0ePVrPP/+80tLS9Le//U1jxoyRr6/v1b85AADKac2uk9p29Kz8vNw1/oamZpcDF2BqANy+fbvi4+PVokWLq97WiBEjlJ6erhdeeEHJyclq06aNVq5cqYYNG0qSkpOTS8wJWKtWLcXFxenRRx9V586dVadOHd1555166aWXrroWAADKy2Y3NPPC6N+YnjGqW5tLjVD1TJkHsMgNN9ygqVOnql+/fmaVcFWYRwgAcLWWxB/TXxdvU6CvpzY8cYMCfcv3AARUHJ/fJo8AfvDBBxo3bpyOHz+uNm3alHrqR7t27UyqDACAqpdbYNNrcfskSeOub0L4Q7UxNQCeOnVKBw4c0OjRo4vbLBZL8fQtNpvNxOoAAKhaH208rONnzys8wEf392hkdjlwIaYGwDFjxqhjx45auHDhVd8EAgBATXI6J19vr/1VkvT4wBby9XI3uSK4ElMD4JEjR7R8+XI1bcodTwAA1/LmN/uVlWvVNREBuq1jfbPLgYsxdR7AG2+8Udu2bTOzBAAAqt2htBx9vPmIJGnq0FZyd+MMGKqXqSOAw4YN06RJk7Rjxw61bdu21E0gN998s0mVAQBQdV75eo+sdkM3tKirnk1DzS4HLsjUaWDc3C4+AFkTbgLhNnIAwJXacvi0/vTuJrlZpFUTr1PzMJ75W934/DZ5BPCPz/4FAMCZGYahl1bsliSNuLYB4Q+mMfUaQAAAXMlX25OLH/k2qX8zs8uBC6v2APjmm28qNze33P3fffddZWVlVWFFAABUvTyrTa+s2iOpcNLnerV9TK4IrqzaA+CkSZOuKNA98cQTOnXqVBVWBABA1Zu/8YiOnTmvsABvje0dY3Y5cHHVfg2gYRjq27evPDzK99Lnz5+v4ooAAKhaZ3Ly9da3+yVJfx3QQn5epl6CD1R/AJw2bdoV9b/lllsUEhJSRdUAAFD13vhmvzJzrWoZXlu3d4oyuxzA8QMgAAA12d6ULP3nwqTPTw+9hkmf4RC4CxgAgCpiGIae//IX2eyGBrYOU69mTPoMx0AABACgiqzamaKNB9Ll5eGmp4deY3Y5QDECIAAAVeB8vq140udx1zVWdIifyRUBvyEAAgBQBd7bcEDHz55XZKCP/tKnqdnlACU4RABMS0tTZmam2WUAAFApjp05p9nrDkiSpg69Rr5e7iZXBJRkWgA8e/asxo8fr9DQUIWFhSk4OFjh4eGaMmWKzp07Z1ZZAABctekrdyvPale3xiEa0jbc7HKAUkyZifL06dPq3r27jh8/rnvvvVetWrWSYRjavXu33nrrLcXFxen777/Xtm3b9OOPP2rChAlmlAkAwBX74dc0rdyRIjeL9NzNrWWxMO0LHI8pAfCFF16Ql5eXDhw4oLCwsFK/GzBggEaOHKk1a9bozTffNKNEAACuWIHNrue//EWSNLJbQ7UMDzC5IqBspgTAZcuW6b333isV/iQpPDxcr776qoYMGaJp06bpvvvuM6FCAACu3Mebj2jfyWwF+3lqUv/mZpcDXJQp1wAmJyerdevWF/19mzZt5ObmxlNDAAA1Rnp2nl6L2ydJenxgCwX5eZlcEXBxpgTA0NBQHT58+KK/P3TokOrVq1d9BQEAcJX+39d7lJVrVevIAN11bQOzywEuyZQAOGjQIE2dOlX5+fmlfpeXl6dnnnlGgwYNMqEyAACu3E+HTmtx/DFJ0gu3tOF5v3B4plwD+Pzzz6tz585q1qyZxo8fr5YtW0qSdu3apVmzZikvL0/z5883ozQAAK5Igc2up5ftkCTd3SVasQ2DTa4IuDxTAmBUVJQ2bdqkhx9+WFOmTJFhGJIki8Wi/v376+2331aDBgyfAwAc35zvD2nfyWyF+Hvp74Naml0OUC6mBEBJiomJ0ddff60zZ85o//79kqSmTZsqJCTErJIAALgix86c0xv/K/wMe2pIK278QI1hWgAsEhwcrC5duphdBgAAV+y55bt0vsCmLjEhur1TfbPLAcrNIZ4FDABATbPmlxT9b/dJebhZ9PKtbXjiB2oUAiAAAFcoJ8+q57/cJUl68LrGahZW2+SKgCtDAAQA4ArNXLNXx8+eV1Swrybc2MzscoArRgAEAOAKJCSd0byNhyVJ029rK18vd3MLAiqAAAgAQDnlW+2asnSHDEMa3rG+rmte1+ySgAohAAIAUE7vbzigPSlZCvH30tM3XWN2OUCFEQABACiHA6ey9eY3v0qSnr3pGoX4M+cfai4CIAAAl2G3G5qydIfybXZd37yubukQaXZJwFUhAAIAcBkLtyTpp0On5eflrpdvY84/1HwEQAAALuHYmXOavmK3JOmvA1ooKtjP5IqAq0cABADgIgyj8NRvTr5NnRsG6/4ejcwuCagUBEAAAC7iky1H9d3+NHl7uOnVO9rJ3Y1Tv3AOBEAAAMpw/Ox5vXzh1O/fBrZQ47q1TK4IqDwEQAAA/sAwDD25ZLuy86yKbRis0T1jzC4JqFQEQAAA/uDTrZz6hXMjAAIA8DvHz57XS18Vnvp9fEALNeHUL5wQARAAgAvsdkOPf7pNWRdO/Y7pxalfOCenCoCzZs1STEyMfHx8FBsbq++++65c6/3www/y8PBQhw4dqrZAAIBDm/vDIW06mC4/L3e9dmd7Tv3CaTlNAFy0aJEmTpyoqVOnKiEhQb1799bgwYOVlJR0yfUyMjI0atQo9e3bt5oqBQA4on0ns/Tq6r2SpKeHXqOGdfxNrgioOk4TAF977TU98MADGjt2rFq1aqXXX39d0dHRmj179iXXe+ihh3TPPfeoe/fu1VQpAMDR5FvtmrQoUflWu25sWU93d4k2uySgSjlFAMzPz1d8fLwGDBhQon3AgAHauHHjRdf78MMPdeDAAU2bNq1cr5OXl6fMzMwSCwCg5nvjm3365USmgv089f9ub8uzfuH0nCIApqWlyWazKSwsrER7WFiYUlJSylxn//79evLJJ7VgwQJ5eHiU63VmzJihwMDA4iU6mv8hAkBNF3/kjGavOyBJmn5bW9Wr7WNyRUDVc4oAWOSP/2MzDKPM/8XZbDbdc889ev7559W8efNyb3/KlCnKyMgoXo4ePXrVNQMAzJOZW6DHPkmQ3ZCGd6yvwW0jzC4JqBblG/pycKGhoXJ3dy812peamlpqVFCSsrKytHXrViUkJOiRRx6RJNntdhmGIQ8PD61Zs0Y33nhjqfW8vb3l7e1dNW8CAFCtDMPQM8t26tiZ84oK9tVzt7Q2uySg2jjFCKCXl5diY2MVFxdXoj0uLk49evQo1T8gIEA7duxQYmJi8TJu3Di1aNFCiYmJ6tq1a3WVDgAwyecJx/VF4gm5u1n0xl0dFeDjaXZJQLVxihFASZo8ebJGjhypzp07q3v37nr//feVlJSkcePGSSo8fXv8+HHNnz9fbm5uatOmTYn169WrJx8fn1LtAADncyQ9R88s2ylJmti3mWIbBptcEVC9nCYAjhgxQunp6XrhhReUnJysNm3aaOXKlWrYsKEkKTk5+bJzAgIAnF+Bza4JnyQqJ9+mLjEheviGpmaXBFQ7i2EYhtlF1FSZmZkKDAxURkaGAgICzC4HAFAOr67ao1nrDijQ11NfP9ZbkUG+ZpeEasbnt5NcAwgAQHls2HdKs9cXTvny/4a3JfzBZREAAQAu4WRmriYtSpRhSPd0bcCUL3BpBEAAgNOz2uyasDBB6Tn5ahURoGdvusbskgBTEQABAE7v9f/t14+HTsvfy12z7u0kH093s0sCTEUABAA4tfX7Tumddb9Kkmbc3k4xof4mVwSYjwAIAHBaKRm/Xfd3b9cGurl9pNklAQ6BAAgAcEr5Vrse+e/POn3hur9nuO4PKEYABAA4pekrd2vrkTOq7e3BdX/AHxAAAQBO54vE45q38bAk6V8jOnDdH/AHBEAAgFPZnZypvy/ZLkl69Mam6ndNmMkVAY6HAAgAcBoZ5ws07uN45RbYdV3zuprYr7nZJQEOiQAIAHAKdruhyYsSdST9nKKCffXGiA5yd7OYXRbgkAiAAACn8K//7dM3e1Ll7eGmd/8cq2B/L7NLAhwWARAAUON9tf2E3vr2wmTPw9uqTf1AkysCHBsBEABQo+08nqHHF2+TJD10XWMN7xRlckWA4yMAAgBqrFNZefq/+VuVW2BXnxZ19cSglmaXBNQIBEAAQI2UZ7XpLx/H60RGrhrX9dcbd3Xkpg+gnAiAAIAaxzAMPf35zsInffh46INRnRXo62l2WUCNQQAEANQ4s9Yd0OL4Y3KzSG/f00mN69YyuySgRiEAAgBqlK+2n9A/Vu+VJD1/c2td37yuyRUBNQ8BEABQY8QfOaPJnxbe8TumZ4xGdm9kbkFADUUABADUCEnp5/R/87cq32pXv1Zhmjq0ldklATUWARAA4PAyzhVozEdblJ6Trzb1A/Tm3TzmDbgaBEAAgEPLLbBp7Pwt+jU1WxGBPppz37Xy8/IwuyygRiMAAgAcls1u6LFPErTlcOF0L/NGd1FYgI/ZZQE1HgEQAOCQDMPQtOU7tfqXk/LycNO/R3VWi/DaZpcFOAUCIADAIb2z9ld9vDlJFov0xogO6ta4jtklAU6DAAgAcDifbjmqmWv2SZKeG9Zag9tGmFwR4FwIgAAAh7JyR7KeXLpdkvRwnya6r0cjcwsCnBABEADgMNbtTdVjnyTIbkh3XRutvw1sYXZJgFMiAAIAHMKWw6c17uN4FdgMDW0XoZdvayuLhbn+gKpAAAQAmG7n8QyN+XCLcgvs6tOirv51JxM9A1WJAAgAMNX+k1kaNfcnZeVZ1SUmRLPvjZWXBx9PQFXibxgAwDS/pmbr7n//qNM5+WpbP1Bz7ussXy93s8sCnB4BEABgigOnsnX3vzcrLTtPrSICNH9MF9X28TS7LMAlEAABANXucFqO7vn3Zp3KylPL8NpaMLargv29zC4LcBkEQABAtUpKP6e7/71ZJzPz1DyslhaM7aoQwh9QrQiAAIBqc/BUtka8v0nJGblqUtdfC8Z2U51a3maXBbgcD7MLAAC4hv0ns3TPBz/qVFaemtT118IHu6lubcIfYAYCIACgyv1yIkMj5/yk0zn5ahleWx+P7apQRv4A0xAAAQBVatvRsxo550dl5lrVtn6g5o/pwg0fgMkIgACAKvPjwXQ98NFWZedZ1alBkOaN6aIApnoBTEcABABUibhdJ/XIf39WntWurjEhmnP/tarlzccO4Aj4mwgAqHSLtx7Vk0t3yGY31K9VPb19Tyf5ePKED8BREAABAJXq/Q0HNH3lHknS7Z2i9MrtbeXhzqxjgCMhAAIAKoXdbuiVVXv03oaDkqQHe8doyuBWcnOzmFwZgD8iAAIArlpugU2PL96mr7YnS5KeHNxS465vYnJVAC7GqcbkZ82apZiYGPn4+Cg2NlbffffdRfsuXbpU/fv3V926dRUQEKDu3btr9erV1VgtADiHMzn5GjnnR321PVkebhbN/FN7wh/g4JwmAC5atEgTJ07U1KlTlZCQoN69e2vw4MFKSkoqs/+GDRvUv39/rVy5UvHx8brhhhs0bNgwJSQkVHPlAFBzJaWf0+2zN2rL4TOq7e2hj8Z00R2xUWaXBeAyLIZhGGYXURm6du2qTp06afbs2cVtrVq10q233qoZM2aUaxutW7fWiBEj9Oyzz5arf2ZmpgIDA5WRkaGAgIAK1Q0ANVX8kTP6v/lblZ6Tr8hAH304uotahNc2uyzgsvj8dpJrAPPz8xUfH68nn3yyRPuAAQO0cePGcm3DbrcrKytLISEhF+2Tl5envLy84p8zMzMrVjAA1HBL4o9pytIdyrfZdU1EgD4cfa3CAnzMLgtAOTnFKeC0tDTZbDaFhYWVaA8LC1NKSkq5tvHPf/5TOTk5uvPOOy/aZ8aMGQoMDCxeoqOjr6puAKhpbHZDM1bu1l8Xb1O+za4B14Rp8bjuhD+ghnGKAFjEYik51YBhGKXayrJw4UI999xzWrRokerVq3fRflOmTFFGRkbxcvTo0auuGQBqiqzcAj04f2vxNC+P3NBU7/45Vv483QOocZzib21oaKjc3d1LjfalpqaWGhX8o0WLFumBBx7Q4sWL1a9fv0v29fb2lre391XXCwA1zYFT2XroP/H6NTVb3h5uevWOdrqlQ32zywJQQU4xAujl5aXY2FjFxcWVaI+Li1OPHj0uut7ChQt1//3367///a+GDh1a1WUCQI20ameybnn7B/2amq2wAG99+lB3wh9QwznFCKAkTZ48WSNHjlTnzp3VvXt3vf/++0pKStK4ceMkFZ6+PX78uObPny+pMPyNGjVKb7zxhrp161Y8eujr66vAwEDT3gcAOAqrza5/rNmr99YXnvLtEhOit+/pqHq1ud4PqOmcJgCOGDFC6enpeuGFF5ScnKw2bdpo5cqVatiwoSQpOTm5xJyA7733nqxWq8aPH6/x48cXt993332aN29edZcPAA4lLTtPExYmaOOBdEmFj3V7YlBLefJMX8ApOM08gGZgHiEAzmjjr2l6bFGiTmXlyc/LXf+4o72Gtoswuyyg0vD57UQjgACAq2O12fXmN/v11tpfZRhSs3q1NOveTmoWxuTOgLMhAAIAlJKRqwmfJOinQ6clSXddG61pw1rL18vd5MoAVAUCIAC4uJU7kvXU5zt09lyB/L3cNX14W+7yBZwcARAAXFRmboGeW/6Llv58XJLUpn6A3rq7k2JC/U2uDEBVIwACgAv68WC6Jn+6TcfPnpebRXq4T1NN6NtMXh7c5Qu4AgIgALiQ8/k2/XPNXs354ZAMQ4oO8dW/7uygzo1CzC4NQDUiAAKAi9h8MF1/X7JdR9LPSZLu7BylZ4e1Vi2e5Qu4HP7WA4CTy86z6pWv9+g/m49IkiICfTT9tra6oWU9kysDYBYCIAA4sf/tOqlpy3/R8bPnJUl3d4nWlCGtFODjaXJlAMxEAAQAJ3Ti7Hk9t/wXrdl1UpIUFeyr/ze8nXo1CzW5MgCOgAAIAE7EarNr3sbDei1un87l2+ThZtHY3o01oW9T+XnxTz6AQvxrAABO4vv9aXr+y1+0PzVbktS5YbBevq2tWoTzKDcAJREAAaCGO5Keo5dW7FbchdO9wX6eenJwS/0pNlpubhaTqwPgiAiAAFBDZZwv0Ox1BzT3+0PKt9nl7mbRyG4NNalfcwX6cZMHgIsjAAJADZNbYNNHGw9r1roDyjhfIEnq1TRUzw67Rs3DON0L4PIIgABQQ1htdn0Wf0yv/2+/UjJzJUnN6tXSE4Naql+rerJYON0LoHwIgADg4AzD0OpfUvSP1Xt14FSOJCky0EeT+jfX8E5Rcuc6PwBXiAAIAA7Kbje0ZtdJvbP2V+04niFJCvLz1CM3NNWfuzWUj6e7yRUCqKkIgADgYKw2u1bsSNY7a3/VvpOFU7r4erprbO8YPXhdY57iAeCqEQABwEHkW+1a+vMxzV5/QEfSz0mSant7aFSPhhrTM0Z1anmbXCEAZ0EABACTZZwr0Kdbj2ruD4eUnFF4c0ewn6ce6BWjkd0bKdCXET8AlYsACAAm2X8yS/M2HtbSn4/rfIFNkhQW4K0HezfWPV0b8Og2AFWGf10AoBrZ7YbW7k3VvI2H9d3+tOL2luG1dX+PRrqtU315e3BzB4CqRQAEgGpwMjNXS34+pkVbjhZf3+dmkfpfE6b7e8SoW+MQ5vEDUG0IgABQRfKtdn2756Q+3XpM6/amym4Utgf4eOjuLg30524NFR3iZ26RAFwSARAAKtnu5Ewt3npMyxKP63ROfnH7tY2C9afYaN3UPoLr+wCYin+BAKAS/Jqapa+2J2vF9mTtT80ubq9X21u3x0bpT7FRaly3lokVAsBvCIAAUEEHT2VrxfZkrdiRrD0pWcXtXu5uurFlPd15bZSua1ZXHu5uJlYJAKURAAGgnGx2Q4lHz+ib3an6dk9qidDn6W5R72Z1NbRthPpdE8bcfQAcGgEQAC7h7Ll8rd93Smv3pGr9vlM6c66g+Hcebhb1bBqqoe0iNPCacAX6EfoA1AwEQAD4ndwCm+KPnNHGA2nadCBd245lyFZ0+64K7+C9vkU93diyrvo0r6dgfy8TqwWAiiEAAnBpuQU2bTt6VpsOpmvjgXQlJp1Vvs1eok/zsFq6oWU93diinmIbBnNNH4AajwAIwGUYhqHD6eeUkHRGiUfPKvHoWe06kSnr70b4JCk8wEfdm9RR98Z11L1JHebqA+B0CIAAnJLVZtfh9BztTs7S7uRM/XIiU9uOndXZ313DVyS0lre6NQ5Rjyah6t6kjhrV8eOpHACcGgEQQI1msxs6fua8DqRl6+CpHO1NydTu5CztO5mlPKu9VH8vDze1iQxQxwbB6hAdpI4NglQ/yJfAB8ClEAABOLzcApuOnz2v42fO6/jZ8zqSfk4HT2XrUFqOjqSfK3XNXhE/L3e1CK+tluEBuiaittpFBalVRIC8PLiGD4BrIwCiRjAMQ3lWu7LzrMrJsyonz6bzBTYV2OzFS77VrnyboQKrXfkX2qy2367tMsrY5h95uFnk4e4mT3eL3N0Kv3q4ucnD3fJb24U+Hu4WebhZ5OXhJm8Pd3l7uMnbw00+noXfc6PA5Vltdp3OyVdqVp5OZefpVNZvy8nM3OLQl/67x6mVxcvDTY3q+Ckm1F8twmqrZUSAWkUEqGGIn9zcGNkDgD8iAKJaWW12nTlXoNM5+Tqdk68z5/KVnpOvMxd+LmrLPF+g7DyrzuXbir/a7KUDmyNzd7MUh0JvD3d5e7rJ58JX79+HRs/C7308SwZJb0/3Eut7eljk6e4mT3c3eXm4yet333u6W+RV/P0f+1jk7ma5qlOcdrshm2HIZi9cCmx25RbYdb7ApvP5NuVabcq98PV8flG7VRnnC5SZa1XGuYIL3//u67kCZeVZVUYOL5Ofl7vqB/mqfrCvGoT4qXGov2Lq1lLjUH9FBvnKnaAHAOVGAESlMQxDp3PydeT0OR07c14pGeeVnJGrlIzc4q+pWbm62hzn5+Uuf28P+Xj+FoK8fxd8PD3c5OVeODLnZvkt+Pw+Hvw+CxV9a0iy2g1ZL4wcFhR9/7uvBbbff2+XzW4o32pXntWuPKtNBb8bcbTZDZ3Lt+lcvk1S6RsPzOBmkSwWS8mvKvzqZrEU7wy73ZD1QtizGUa5Q1pFa6pTy1t1a3mrbu3CJbSWt+rV9lb9YF/VD/JVVLCvAn09uU4PACoJARBXLONcgfalZulAarYOp59T0unC67COpJ9Tdp71sutbLFKQr6dC/L1KLMF+v30f4OMpf28P1fL2kL93YeDz9/aQn6e7Q5/S+y0Q2gpDYcFv3+cW2IqDYmH7ZfpdaMstuHCK+8Jp7sJT3kbx96XaL/xcFrshyTBkk1T6pPiV8XCzyNfTXd6e7vL1cpOvp7t8frf4ebor0NdTAb4eF756Fn8N8Cn8PvDCccDoHQBULwIgLiq3wKY9KVnal5KlvScL76rcdzJLJzPzLrleRKCPooP9FBHko/BAH0UG+io80EcRgYU/1/H3dtoPfHc3i3y93OXr5W5qHYZhFI9S5lsLRyoNSfYLo3l//Fr0vf3CUJ+Hm5vc3S1ytxSePv794nHhqyfXOAJAjUUAhCQpz2rT3pQsbT+WoR3HMrT9eIb2ncy66HV3EYE+alqvlmJC/dWwjr8ahvipUaifooL95ONpbvhB4eldT/fCkObHk8oAAH9AAHRR6dl52nL4tH46dEZbj5zW7uTMEtevFQmt5aWW4QFqFlZLzcNqq3lYbTULq6UAHx56DwBATUUAdBEnzp7Xj4fS9dOh0/rp0GkdOJVTqk+wn6faRgWpXf1AtY0KVLuoQIUH+HDhPQAAToYA6KRyC2z68dBpbdh3Suv3ndKvqdml+jQPq6UuMSG6tlGIOjUIVlQwT0MAAMAVEACdyKG0HH2z+6Q27E/TjwfTSzwGy80ita0fqC4xIeoSU0edGwYr2J+LwwAAcEUEwBrMMAztTs7Sql9StHpnivaezCrx+4hAH13XrK6ua15XvZqGKtCP6/YAAICTBcBZs2bpH//4h5KTk9W6dWu9/vrr6t2790X7r1+/XpMnT9Yvv/yiyMhIPfHEExo3blw1Vnzl7HZDCUfPavUvKVq1M0VJp88V/87DzaJujeuoT4vC0NesXi1O6QIAgFKcJgAuWrRIEydO1KxZs9SzZ0+99957Gjx4sHbt2qUGDRqU6n/o0CENGTJEDz74oD7++GP98MMPevjhh1W3bl3dfvvtJryDS/s1NVufJxzTsoQTOn72fHG7j6ebrm9eV4PahOvGFmGM8gEAgMuyGEZVPuSp+nTt2lWdOnXS7Nmzi9tatWqlW2+9VTNmzCjV/+9//7uWL1+u3bt3F7eNGzdO27Zt06ZNm8r1mpmZmQoMDFRGRoYCAgKu/k38QXp2nr7cdkKfJxzXtmMZxe21vT3Ut1U9DWoTruua15Wfl9PkeAAAqlxVf37XBE6RHPLz8xUfH68nn3yyRPuAAQO0cePGMtfZtGmTBgwYUKJt4MCBmjNnjgoKCuTpWXokLS8vT3l5vz0FIzMzsxKqL23d3lR9vPmI1u09Jau96MkMFl3fvK5u61Rf/VqFMdkyAACoMKcIgGlpabLZbAoLCyvRHhYWppSUlDLXSUlJKbO/1WpVWlqaIiIiSq0zY8YMPf/885VX+EVsPnha/9udKklqFxWo2zrW17D2kQqt5V3lrw0AAJyfUwTAIn+84cEwjEveBFFW/7Lai0yZMkWTJ08u/jkzM1PR0dEVLfei7oiNkptFGt6pvprWq13p2wcAAK7NKQJgaGio3N3dS432paamlhrlKxIeHl5mfw8PD9WpU6fMdby9veXtXfWjcE3r1dITg1pW+esAAADX5GZ2AZXBy8tLsbGxiouLK9EeFxenHj16lLlO9+7dS/Vfs2aNOnfuXOb1fwAAAM7CKQKgJE2ePFkffPCB5s6dq927d2vSpElKSkoqntdvypQpGjVqVHH/cePG6ciRI5o8ebJ2796tuXPnas6cOXr88cfNegsAAADVwilOAUvSiBEjlJ6erhdeeEHJyclq06aNVq5cqYYNG0qSkpOTlZSUVNw/JiZGK1eu1KRJk/TOO+8oMjJSb775pkPOAQgAAFCZnGYeQDMwjxAAADUPn99OdAoYAAAA5UMABAAAcDEEQAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABfjNI+CM0PRQ1QyMzNNrgQAAJRX0ee2Kz8MjQB4FbKysiRJ0dHRJlcCAACuVFZWlgIDA80uwxQ8C/gq2O12nThxQrVr15bFYqnUbWdmZio6OlpHjx512ecUVhT7ruLYdxXHvqs49l3Fse8qxjAMZWVlKTIyUm5urnk1HCOAV8HNzU1RUVFV+hoBAQH8pa4g9l3Fse8qjn1Xcey7imPfXTlXHfkr4pqxFwAAwIURAAEAAFwMAdBBeXt7a9q0afL29ja7lBqHfVdx7LuKY99VHPuu4th3qChuAgEAAHAxjAACAAC4GAIgAACAiyEAAgAAuBgCIAAAgIshAJpk1qxZiomJkY+Pj2JjY/Xdd99dsv/69esVGxsrHx8fNW7cWO+++241Vep4rmTfrVu3ThaLpdSyZ8+eaqzYMWzYsEHDhg1TZGSkLBaLli1bdtl1OO4KXem+47j7zYwZM3Tttdeqdu3aqlevnm699Vbt3bv3sutx7FVs33HsobwIgCZYtGiRJk6cqKlTpyohIUG9e/fW4MGDlZSUVGb/Q4cOaciQIerdu7cSEhL01FNPacKECVqyZEk1V26+K913Rfbu3avk5OTipVmzZtVUsePIyclR+/bt9fbbb5erP8fdb6503xXhuCsMcuPHj9fmzZsVFxcnq9WqAQMGKCcn56LrcOwVqsi+K8Kxh8syUO26dOlijBs3rkRby5YtjSeffLLM/k888YTRsmXLEm0PPfSQ0a1btyqr0VFd6b5bu3atIck4c+ZMNVRXc0gyPv/880v24bgrW3n2HcfdxaWmphqSjPXr11+0D8de2cqz7zj2UF6MAFaz/Px8xcfHa8CAASXaBwwYoI0bN5a5zqZNm0r1HzhwoLZu3aqCgoIqq9XRVGTfFenYsaMiIiLUt29frV27tirLdBocd1eP4660jIwMSVJISMhF+3Dsla08+64Ixx4uhwBYzdLS0mSz2RQWFlaiPSwsTCkpKWWuk5KSUmZ/q9WqtLS0KqvV0VRk30VEROj999/XkiVLtHTpUrVo0UJ9+/bVhg0bqqPkGo3jruI47spmGIYmT56sXr16qU2bNhftx7FXWnn3HcceysvD7AJclcViKfGzYRil2i7Xv6x2V3Al+65FixZq0aJF8c/du3fX0aNHNXPmTF133XVVWqcz4LirGI67sj3yyCPavn27vv/++8v25dgrqbz7jmMP5cUIYDULDQ2Vu7t7qRGr1NTUUv/jLRIeHl5mfw8PD9WpU6fKanU0Fdl3ZenWrZv2799f2eU5HY67yuXqx92jjz6q5cuXa+3atYqKirpkX469kq5k35XF1Y89lI0AWM28vLwUGxuruLi4Eu1xcXHq0aNHmet07969VP81a9aoc+fO8vT0rLJaHU1F9l1ZEhISFBERUdnlOR2Ou8rlqsedYRh65JFHtHTpUn377beKiYm57Doce4Uqsu/K4qrHHi7DtNtPXNgnn3xieHp6GnPmzDF27dplTJw40fD39zcOHz5sGIZhPPnkk8bIkSOL+x88eNDw8/MzJk2aZOzatcuYM2eO4enpaXz22WdmvQXTXOm++9e//mV8/vnnxr59+4ydO3caTz75pCHJWLJkiVlvwTRZWVlGQkKCkZCQYEgyXnvtNSMhIcE4cuSIYRgcd5dypfuO4+43f/nLX4zAwEBj3bp1RnJycvFy7ty54j4ce2WryL7j2EN5EQBN8s477xgNGzY0vLy8jE6dOpW4rf++++4zrr/++hL9161bZ3Ts2NHw8vIyGjVqZMyePbuaK3YcV7LvXnnlFaNJkyaGj4+PERwcbPTq1ctYsWKFCVWbr2h6iD8u9913n2EYHHeXcqX7juPuN2XtN0nGhx9+WNyHY69sFdl3HHsoL4thXLiyFgAAAC6BawABAABcDAEQAADAxRAAAQAAXAwBEAAAwMUQAAEAAFwMARAAAMDFEAABAABcDAEQAAA4lA0bNmjYsGGKjIyUxWLRsmXLrngbhmFo5syZat68uby9vRUdHa3p06dXfrE1FAEQAP6gUaNGev3118vdf968ebJYLLJYLJo4cWKl1bFu3bri7d56662Vtl3A0eXk5Kh9+/Z6++23K7yNxx57TB988IFmzpypPXv26Msvv1SXLl0qscqajQAIwKHcf//9xaHH09NTYWFh6t+/v+bOnSu73W52eRcVEBCg5ORkvfjii8Vtffr0KX4v3t7eat68uaZPny6bzVaubfbo0UPJycm68847q6pswCENHjxYL730koYPH17m7/Pz8/XEE0+ofv368vf3V9euXbVu3bri3+/evVuzZ8/WF198oZtvvlkxMTHq0KGD+vXrV03vwPERAAE4nEGDBik5OVmHDx/W119/rRtuuEGPPfaYbrrpJlmt1ouuV1BQUI1VlmSxWBQeHq7atWuXaH/wwQeVnJysvXv3asKECXr66ac1c+bMcm3Ty8tL4eHh8vX1rYqSgRpr9OjR+uGHH/TJJ59o+/bt+tOf/qRBgwZp//79kqQvv/xSjRs31ldffaWYmBg1atRIY8eO1enTp02u3HEQAAE4HG9vb4WHh6t+/frq1KmTnnrqKX3xxRf6+uuvNW/evOJ+FotF7777rm655Rb5+/vrpZde0rx58xQUFFRie8uWLZPFYinRtnz5cnXu3Fk+Pj4KDQ296EiDJH344YcKDAxUXFzcFb8XPz8/hYeHq1GjRnrkkUfUt2/f4uuZXnvtNbVt21b+/v6Kjo7Www8/rOzs7Ct+DcCVHDhwQAsXLtTixYvVu3dvNWnSRI8//rh69eqlDz/8UJJ08OBBHTlyRIsXL9b8+fM1b948xcfH64477jC5esdBAARQI9x4441q3769li5dWqJ92rRpuuWWW7Rjxw6NGTOmXNtasWKFhg8frqFDhyohIUHffPONOnfuXGbfmTNn6vHHH9fq1avVv3//q34fvr6+xSOVbm5uevPNN7Vz50599NFH+vbbb/XEE09c9WsAzuznn3+WYRhq3ry5atWqVbysX79eBw4ckCTZ7Xbl5eVp/vz56t27t/r06aM5c+Zo7dq12rt3r8nvwDF4mF0AAJRXy5YttX379hJt99xzT7mDX5GXX35Zd911l55//vnitvbt25fqN2XKFH300Udat26d2rZtW7GiL7Db7VqzZo1Wr15dfKPI728YiYmJ0Ysvvqi//OUvmjVr1lW9FuDM7Ha73N3dFR8fL3d39xK/q1WrliQpIiJCHh4eat68efHvWrVqJUlKSkpSixYtqq9gB0UABFBjGIZR6lTuxUbuLiUxMVEPPvjgJfv885//VE5OjrZu3arGjRtf8WsUmTVrlj744APl5+dLkkaOHKlp06ZJktauXavp06dr165dyszMlNVqVW5urnJycuTv71/h1wScWceOHWWz2ZSamqrevXuX2adnz56yWq06cOCAmjRpIknat2+fJKlhw4bVVqsj4xQwgBpj9+7diomJKdH2x6Dk5uYmwzBKtP3x5pDy3FTRu3dv2Ww2ffrppxWsttC9996rxMREHThwQOfPn9ecOXPk5+enI0eOaMiQIWrTpo2WLFmi+Ph4vfPOO2XWC7ia7OxsJSYmKjExUZJ06NAhJSYmKikpSc2bN9e9996rUaNGaenSpTp06JC2bNmiV155RStXrpQk9evXT506ddKYMWOUkJCg+Ph4PfTQQ+rfv3+JUUFXRgAEUCN8++232rFjh26//fZL9qtbt66ysrKUk5NT3Fb0IVKkXbt2+uabby65nS5dumjVqlWaPn26/vGPf1S47sDAQDVt2lTR0dElTldt3bpVVqtV//znP9WtWzc1b95cJ06cqPDrAM5k69at6tixozp27ChJmjx5sjp27Khnn31WUuGNWaNGjdJf//pXtWjRQjfffLN+/PFHRUdHSyr8j+CXX36p0NBQXXfddRo6dKhatWqlTz75xLT35Gg4BQzA4eTl5SklJUU2m00nT57UqlWrNGPGDN10000aNWrUJdft2rWr/Pz89NRTT+nRRx/VTz/9VOLOYanwxpG+ffuqSZMmuuuuu2S1WvX111+XugGje/fu+vrrrzVo0CB5eHho0qRJlfYemzRpIqvVqrfeekvDhg3TDz/8oHfffbfStg/UZH369Ck1kv97np6eev7550tcx/tHkZGRWrJkSVWU5xQYAQTgcFatWqWIiAg1atRIgwYN0tq1a/Xmm2/qiy++KHXR9x+FhITo448/1sqVK9W2bVstXLhQzz33XIk+ffr00eLFi7V8+XJ16NBBN954o3788ccyt9ezZ0+tWLFCzzzzjN58883Keovq0KGDXnvtNb3yyitq06aNFixYoBkzZlTa9gHgUizGpSI2AOCy5s2bp4kTJ+rs2bNVsv37779fZ8+erdDzUAGgLIwAAkAlyMjIUK1atfT3v/+90rb53XffqVatWlqwYEGlbRMAJEYAAeCqZWVl6eTJk5KkoKAghYaGVsp2z58/r+PHj0sqnN8sPDy8UrYLAARAAAAAF8MpYAAAABdDAAQAAHAxBEAAAAAXQwAEAABwMQRAAAAAF0MABAAAcDEEQAAAABdDAAQAAHAx/x8RKQjFw6v8qgAAAABJRU5ErkJggg==", "text/html": [ "\n", "