{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# # only need to import the function you want to use\n", "# # secondary functions, that are called within the imported one, don't need to be importex explicitly\n", "# from volume_change import V_von_h\n", "\n", "# V_von_h(10)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# create in and outflux vectors\n", "import pandas as pd\n", "import numpy as np\n", "from numpy import cos,sin\n", "from volume_change import V_h_test_1,h_V_test_1,V_h_test_2,h_V_test_2\n", "from flow_patterns import return_flux_profiles,make_flux_df\n", "\n", "\n", "t_max = 100\n", "timestep = 1\n", "time = np.arange(0,t_max,timestep)\n", "#input identifiers\n", "i_i = 'st_0010_0010'\n", "#output identifiers\n", "o_i = 'st_0010_0010'\n", "# influx and outflux offset\n", "i_o = 7.5\n", "o_o = 8.\n", "#outflux delay\n", "o_d = 5\n", "\n", "influx, outflux = return_flux_profiles(len(time),i_i,o_i,i_o,o_o,o_d)\n", "\n", "\n", "h_0 = 0.\n", "\n", "V_t = np.empty_like(time,dtype=float)\n", "h_t = np.empty_like(time,dtype=float)\n", "delta_Q = np.empty_like(time,dtype=float)\n", "delta_V = np.empty_like(time,dtype=float)\n", "\n", "for i in range(len(time)):\n", " delta_Q[i] = influx[i]-outflux[i]\n", " delta_V[i] = delta_Q[i]*timestep\n", " if i == 0:\n", " V_t[0] = V_h_test_2(h_0)\n", " else:\n", " V_t[i] = V_t[i-1]+delta_V[i]\n", " \n", " h_t[i] = h_V_test_2(V_t[i])\n", "\n", "df = pd.DataFrame(np.transpose([time,influx,outflux,h_t,V_t]),columns=['time','influx','outflux','h_t','V_t'])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5101051e4acd4cfeace5f79c193a6a04", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh+0lEQVR4nO3df4yV1Z348c/IwIy0cKVOmRFFGF0DEjTRIeKwmWITO4D115ZNUetst3FdSWMRSKOo3UA0AbTGGgPIlmK3TbrqtojLHywB10pcGVQIIAvUpF0UVrgiFOfO1i4/n/3DL/frOMOAyszc8bxeyf1jnjnncs7JxHn3uXNvy7IsywIAgGSc1dMLAACgewlAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDElPf0Anqz48ePx549e2LAgAFRVlbW08sBAE5DlmXR2toaQ4YMibPOSvNemAD8HPbs2RNDhw7t6WUAAJ/B7t2744ILLujpZfQIAfg5DBgwICI++gEaOHBgD68GADgdhUIhhg4dWvw9niIB+DmceNl34MCBAhAAepmU/3wrzRe+AQASJgABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQAS02sCcNGiRVFbWxuVlZVRV1cXr7zySqfj165dG3V1dVFZWRkXXXRRLF68+KRjn3322SgrK4ubb775DK8aAKD09IoAfO6552L69Onx4IMPxqZNm6KhoSEmTZoUu3bt6nD8zp0747rrrouGhobYtGlTPPDAAzFt2rRYtmxZu7HvvPNO/PCHP4yGhoau3gYAQEkoy7Is6+lFnMrYsWPjyiuvjKeeeqp47dJLL42bb7455s2b1278fffdFytWrIgdO3YUr02dOjW2bNkSzc3NxWvHjh2L8ePHx/e+97145ZVX4oMPPogXXnjhtNdVKBQil8tFS0tLDBw48LNtDgDoVn5/94I7gIcPH46NGzdGY2Njm+uNjY2xbt26Duc0Nze3Gz9hwoTYsGFDHDlypHjtoYceiq9+9atxxx13nNZaDh06FIVCoc0DAKC3KfkA3L9/fxw7diyqq6vbXK+uro58Pt/hnHw+3+H4o0ePxv79+yMi4tVXX42lS5fGkiVLTnst8+bNi1wuV3wMHTr0U+4GAKDnlXwAnlBWVtbm6yzL2l071fgT11tbW+P222+PJUuWRFVV1Wmv4f7774+WlpbiY/fu3Z9iBwAApaG8pxdwKlVVVdGnT592d/v27dvX7i7fCTU1NR2OLy8vj3PPPTe2bdsWb7/9dtxwww3F7x8/fjwiIsrLy+Ott96Kiy++uN3zVlRUREVFxefdEgBAjyr5O4D9+vWLurq6WLNmTZvra9asiXHjxnU4p76+vt341atXx5gxY6Jv374xcuTI2Lp1a2zevLn4uPHGG+PrX/96bN682Uu7AMAXWsnfAYyImDlzZjQ1NcWYMWOivr4+fvrTn8auXbti6tSpEfHRS7Pvvvtu/PKXv4yIj97xu2DBgpg5c2bceeed0dzcHEuXLo1nnnkmIiIqKytj9OjRbf6Nc845JyKi3XUAgC+aXhGAU6ZMiQMHDsRDDz0Ue/fujdGjR8fKlStj2LBhERGxd+/eNp8JWFtbGytXrowZM2bEwoULY8iQIfHkk0/G5MmTe2oLAAAlo1d8DmCp8jlCAND7+P3dC/4GEACAM0sAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkptcE4KJFi6K2tjYqKyujrq4uXnnllU7Hr127Nurq6qKysjIuuuiiWLx4cZvvL1myJBoaGmLQoEExaNCguPbaa+P111/vyi0AAJSEXhGAzz33XEyfPj0efPDB2LRpUzQ0NMSkSZNi165dHY7fuXNnXHfdddHQ0BCbNm2KBx54IKZNmxbLli0rjnn55Zfj1ltvjd/+9rfR3NwcF154YTQ2Nsa7777bXdsCAOgRZVmWZT29iFMZO3ZsXHnllfHUU08Vr1166aVx8803x7x589qNv++++2LFihWxY8eO4rWpU6fGli1borm5ucN/49ixYzFo0KBYsGBB/M3f/M1pratQKEQul4uWlpYYOHDgp9wVANAT/P7uBXcADx8+HBs3bozGxsY21xsbG2PdunUdzmlubm43fsKECbFhw4Y4cuRIh3M+/PDDOHLkSHzlK1856VoOHToUhUKhzQMAoLcp+QDcv39/HDt2LKqrq9tcr66ujnw+3+GcfD7f4fijR4/G/v37O5wza9asOP/88+Paa6896VrmzZsXuVyu+Bg6dOin3A0AQM8r+QA8oaysrM3XWZa1u3aq8R1dj4h49NFH45lnnonnn38+KisrT/qc999/f7S0tBQfu3fv/jRbAAAoCeU9vYBTqaqqij59+rS727dv3752d/lOqKmp6XB8eXl5nHvuuW2uP/bYYzF37tx48cUX4/LLL+90LRUVFVFRUfEZdgEAUDpK/g5gv379oq6uLtasWdPm+po1a2LcuHEdzqmvr283fvXq1TFmzJjo27dv8dqPf/zjePjhh2PVqlUxZsyYM794AIASVPIBGBExc+bM+NnPfhZPP/107NixI2bMmBG7du2KqVOnRsRHL81+/J27U6dOjXfeeSdmzpwZO3bsiKeffjqWLl0aP/zhD4tjHn300fjRj34UTz/9dAwfPjzy+Xzk8/n4n//5n27fHwBAdyr5l4AjIqZMmRIHDhyIhx56KPbu3RujR4+OlStXxrBhwyIiYu/evW0+E7C2tjZWrlwZM2bMiIULF8aQIUPiySefjMmTJxfHLFq0KA4fPhx//dd/3ebfmj17dsyZM6db9gUA0BN6xecAliqfIwQAvY/f373kJWAAAM4cAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkJheE4CLFi2K2traqKysjLq6unjllVc6Hb927dqoq6uLysrKuOiii2Lx4sXtxixbtixGjRoVFRUVMWrUqFi+fHlXLR8AoGT0igB87rnnYvr06fHggw/Gpk2boqGhISZNmhS7du3qcPzOnTvjuuuui4aGhti0aVM88MADMW3atFi2bFlxTHNzc0yZMiWamppiy5Yt0dTUFN/+9rfjtdde665tAQD0iLIsy7KeXsSpjB07Nq688sp46qmnitcuvfTSuPnmm2PevHntxt93332xYsWK2LFjR/Ha1KlTY8uWLdHc3BwREVOmTIlCoRD/9m//VhwzceLEGDRoUDzzzDOnta5CoRC5XC5aWlpi4MCBn3V7AEA38vu7F9wBPHz4cGzcuDEaGxvbXG9sbIx169Z1OKe5ubnd+AkTJsSGDRviyJEjnY452XNGRBw6dCgKhUKbBwBAb1PyAbh///44duxYVFdXt7leXV0d+Xy+wzn5fL7D8UePHo39+/d3OuZkzxkRMW/evMjlcsXH0KFDP8uWAAB6VMkH4AllZWVtvs6yrN21U43/5PVP+5z3339/tLS0FB+7d+8+7fUDAJSK8p5ewKlUVVVFnz592t2Z27dvX7s7eCfU1NR0OL68vDzOPffcTsec7DkjIioqKqKiouKzbAMAoGSU/B3Afv36RV1dXaxZs6bN9TVr1sS4ceM6nFNfX99u/OrVq2PMmDHRt2/fTsec7DkBAL4oSv4OYETEzJkzo6mpKcaMGRP19fXx05/+NHbt2hVTp06NiI9emn333Xfjl7/8ZUR89I7fBQsWxMyZM+POO++M5ubmWLp0aZt3995zzz3xta99LR555JG46aab4l//9V/jxRdfjP/4j//okT0CAHSXXhGAU6ZMiQMHDsRDDz0Ue/fujdGjR8fKlStj2LBhERGxd+/eNp8JWFtbGytXrowZM2bEwoULY8iQIfHkk0/G5MmTi2PGjRsXzz77bPzoRz+Kf/iHf4iLL744nnvuuRg7dmy37w8AoDv1is8BLFU+RwgAeh+/v3vB3wACAHBmCUAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMSUfAAePHgwmpqaIpfLRS6Xi6ampvjggw86nZNlWcyZMyeGDBkSZ599dlxzzTWxbdu24vf/+Mc/xg9+8IMYMWJE9O/fPy688MKYNm1atLS0dPFuAAB6XskH4G233RabN2+OVatWxapVq2Lz5s3R1NTU6ZxHH300Hn/88ViwYEG88cYbUVNTE9/4xjeitbU1IiL27NkTe/bsicceeyy2bt0a//RP/xSrVq2KO+64ozu2BADQo8qyLMt6ehEns2PHjhg1alSsX78+xo4dGxER69evj/r6+vjd734XI0aMaDcny7IYMmRITJ8+Pe67776IiDh06FBUV1fHI488EnfddVeH/9avf/3ruP322+NPf/pTlJeXn9b6CoVC5HK5aGlpiYEDB37GXQIA3cnv7xK/A9jc3By5XK4YfxERV199deRyuVi3bl2Hc3bu3Bn5fD4aGxuL1yoqKmL8+PEnnRMRxR+C040/AIDeqqRrJ5/Px+DBg9tdHzx4cOTz+ZPOiYiorq5uc726ujreeeedDuccOHAgHn744ZPeHTzh0KFDcejQoeLXhUKh0/EAAKWoR+4AzpkzJ8rKyjp9bNiwISIiysrK2s3PsqzD6x/3ye+fbE6hUIhvfvObMWrUqJg9e3anzzlv3rzim1FyuVwMHTr0VFsFACg5PXIH8O67745bbrml0zHDhw+PN998M957771233v//ffb3eE7oaamJiI+uhN43nnnFa/v27ev3ZzW1taYOHFifPnLX47ly5dH3759O13T/fffHzNnzix+XSgURCAA0Ov0SABWVVVFVVXVKcfV19dHS0tLvP7663HVVVdFRMRrr70WLS0tMW7cuA7n1NbWRk1NTaxZsyauuOKKiIg4fPhwrF27Nh555JHiuEKhEBMmTIiKiopYsWJFVFZWnnI9FRUVUVFRcTpbBAAoWSX9JpBLL700Jk6cGHfeeWesX78+1q9fH3feeWdcf/31bd4BPHLkyFi+fHlEfPTS7/Tp02Pu3LmxfPny+M///M/427/92+jfv3/cdtttEfHRnb/Gxsb405/+FEuXLo1CoRD5fD7y+XwcO3asR/YKANBdSvpNIBERv/rVr2LatGnFd/XeeOONsWDBgjZj3nrrrTYf4nzvvffGn//85/j+978fBw8ejLFjx8bq1atjwIABERGxcePGeO211yIi4i/+4i/aPNfOnTtj+PDhXbgjAICeVdKfA1jqfI4QAPQ+fn+X+EvAAACceQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxJR+ABw8ejKampsjlcpHL5aKpqSk++OCDTudkWRZz5syJIUOGxNlnnx3XXHNNbNu27aRjJ02aFGVlZfHCCy+c+Q0AAJSYkg/A2267LTZv3hyrVq2KVatWxebNm6OpqanTOY8++mg8/vjjsWDBgnjjjTeipqYmvvGNb0Rra2u7sU888USUlZV11fIBAEpOeU8voDM7duyIVatWxfr162Ps2LEREbFkyZKor6+Pt956K0aMGNFuTpZl8cQTT8SDDz4Y3/rWtyIi4he/+EVUV1fHP//zP8ddd91VHLtly5Z4/PHH44033ojzzjuvezYFANDDSvoOYHNzc+RyuWL8RURcffXVkcvlYt26dR3O2blzZ+Tz+WhsbCxeq6ioiPHjx7eZ8+GHH8att94aCxYsiJqamq7bBABAiSnpO4D5fD4GDx7c7vrgwYMjn8+fdE5ERHV1dZvr1dXV8c477xS/njFjRowbNy5uuumm017PoUOH4tChQ8WvC4XCac8FACgVPXIHcM6cOVFWVtbpY8OGDRERHf59XpZlp/y7vU9+/+NzVqxYES+99FI88cQTn2rd8+bNK74ZJZfLxdChQz/VfACAUtAjdwDvvvvuuOWWWzodM3z48HjzzTfjvffea/e9999/v90dvhNOvJybz+fb/F3fvn37inNeeuml+MMf/hDnnHNOm7mTJ0+OhoaGePnllzt87vvvvz9mzpxZ/LpQKIhAAKDX6ZEArKqqiqqqqlOOq6+vj5aWlnj99dfjqquuioiI1157LVpaWmLcuHEdzqmtrY2amppYs2ZNXHHFFRERcfjw4Vi7dm088sgjERExa9as+Lu/+7s28y677LL4yU9+EjfccMNJ11NRUREVFRWntUcAgFJV0n8DeOmll8bEiRPjzjvvjH/8x3+MiIi///u/j+uvv77NO4BHjhwZ8+bNi7/6q7+KsrKymD59esydOzcuueSSuOSSS2Lu3LnRv3//uO222yLio7uEHb3x48ILL4za2tru2RwAQA8p6QCMiPjVr34V06ZNK76r98Ybb4wFCxa0GfPWW29FS0tL8et77703/vznP8f3v//9OHjwYIwdOzZWr14dAwYM6Na1AwCUorIsy7KeXkRvVSgUIpfLRUtLSwwcOLCnlwMAnAa/v0v8cwABADjzBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiynt6Ab1ZlmUREVEoFHp4JQDA6Trxe/vE7/EUCcDPobW1NSIihg4d2sMrAQA+rdbW1sjlcj29jB5RlqWcv5/T8ePHY8+ePTFgwIAoKyvr6eX0uEKhEEOHDo3du3fHwIEDe3o5X1jOuXs45+7hnLuHc24ry7JobW2NIUOGxFlnpfnXcO4Afg5nnXVWXHDBBT29jJIzcOBA/4HpBs65ezjn7uGcu4dz/v9SvfN3QprZCwCQMAEIAJAYAcgZU1FREbNnz46KioqeXsoXmnPuHs65ezjn7uGc+SRvAgEASIw7gAAAiRGAAACJEYAAAIkRgAAAiRGAnLaDBw9GU1NT5HK5yOVy0dTUFB988EGnc7Isizlz5sSQIUPi7LPPjmuuuSa2bdt20rGTJk2KsrKyeOGFF878BnqJrjjnP/7xj/GDH/wgRowYEf37948LL7wwpk2bFi0tLV28m9KxaNGiqK2tjcrKyqirq4tXXnml0/Fr166Nurq6qKysjIsuuigWL17cbsyyZcti1KhRUVFREaNGjYrly5d31fJ7lTN91kuWLImGhoYYNGhQDBo0KK699tp4/fXXu3ILvUJX/Eyf8Oyzz0ZZWVncfPPNZ3jVlIwMTtPEiROz0aNHZ+vWrcvWrVuXjR49Orv++us7nTN//vxswIAB2bJly7KtW7dmU6ZMyc4777ysUCi0G/v4449nkyZNyiIiW758eRftovR1xTlv3bo1+9a3vpWtWLEi+/3vf5/9+7//e3bJJZdkkydP7o4t9bhnn30269u3b7ZkyZJs+/bt2T333JN96Utfyt55550Ox//Xf/1X1r9//+yee+7Jtm/fni1ZsiTr27dv9pvf/KY4Zt26dVmfPn2yuXPnZjt27Mjmzp2blZeXZ+vXr++ubZWkrjjr2267LVu4cGG2adOmbMeOHdn3vve9LJfLZf/93//dXdsqOV1xzie8/fbb2fnnn581NDRkN910UxfvhJ4iADkt27dvzyKizS+35ubmLCKy3/3udx3OOX78eFZTU5PNnz+/eO1///d/s1wuly1evLjN2M2bN2cXXHBBtnfv3qQDsKvP+eP+5V/+JevXr1925MiRM7eBEnXVVVdlU6dObXNt5MiR2axZszocf++992YjR45sc+2uu+7Krr766uLX3/72t7OJEye2GTNhwoTslltuOUOr7p264qw/6ejRo9mAAQOyX/ziF59/wb1UV53z0aNHs7/8y7/Mfvazn2Xf/e53BeAXmJeAOS3Nzc2Ry+Vi7NixxWtXX3115HK5WLduXYdzdu7cGfl8PhobG4vXKioqYvz48W3mfPjhh3HrrbfGggULoqampus20Qt05Tl/UktLSwwcODDKy7/Y/5fghw8fjo0bN7Y5n4iIxsbGk55Pc3Nzu/ETJkyIDRs2xJEjRzod09mZf9F11Vl/0ocffhhHjhyJr3zlK2dm4b1MV57zQw89FF/96lfjjjvuOPMLp6QIQE5LPp+PwYMHt7s+ePDgyOfzJ50TEVFdXd3menV1dZs5M2bMiHHjxsVNN910BlfcO3XlOX/cgQMH4uGHH4677rrrc6649O3fvz+OHTv2qc4nn893OP7o0aOxf//+Tsec7DlT0FVn/UmzZs2K888/P6699tozs/BepqvO+dVXX42lS5fGkiVLumbhlBQBmLg5c+ZEWVlZp48NGzZERERZWVm7+VmWdXj94z75/Y/PWbFiRbz00kvxxBNPnJkNlaiePuePKxQK8c1vfjNGjRoVs2fP/hy76l1O93w6G//J65/2OVPRFWd9wqOPPhrPPPNMPP/881FZWXkGVtt7nclzbm1tjdtvvz2WLFkSVVVVZ36xlJwv9ms/nNLdd98dt9xyS6djhg8fHm+++Wa899577b73/vvvt/tflSeceDk3n8/HeeedV7y+b9++4pyXXnop/vCHP8Q555zTZu7kyZOjoaEhXn755U+xm9LV0+d8Qmtra0ycODG+/OUvx/Lly6Nv376fdiu9TlVVVfTp06fdnZGOzueEmpqaDseXl5fHueee2+mYkz1nCrrqrE947LHHYu7cufHiiy/G5ZdffmYX34t0xTlv27Yt3n777bjhhhuK3z9+/HhERJSXl8dbb70VF1988RneCT3JHcDEVVVVxciRIzt9VFZWRn19fbS0tLT56IXXXnstWlpaYty4cR0+d21tbdTU1MSaNWuK1w4fPhxr164tzpk1a1a8+eabsXnz5uIjIuInP/lJ/PznP++6jXeznj7niI/u/DU2Nka/fv1ixYoVydw96devX9TV1bU5n4iINWvWnPRM6+vr241fvXp1jBkzphjNJxtzsudMQVeddUTEj3/843j44Ydj1apVMWbMmDO/+F6kK8555MiRsXXr1jb/Lb7xxhvj61//emzevDmGDh3aZfuhh/TQm0/ohSZOnJhdfvnlWXNzc9bc3Jxddtll7T6eZMSIEdnzzz9f/Hr+/PlZLpfLnn/++Wzr1q3ZrbfeetKPgTkhEn4XcJZ1zTkXCoVs7Nix2WWXXZb9/ve/z/bu3Vt8HD16tFv31xNOfGTG0qVLs+3bt2fTp0/PvvSlL2Vvv/12lmVZNmvWrKypqak4/sRHZsyYMSPbvn17tnTp0nYfmfHqq69mffr0yebPn5/t2LEjmz9/vo+BybrmrB955JGsX79+2W9+85s2P7utra3dvr9S0RXn/EneBfzFJgA5bQcOHMi+853vZAMGDMgGDBiQfec738kOHjzYZkxEZD//+c+LXx8/fjybPXt2VlNTk1VUVGRf+9rXsq1bt3b676QegF1xzr/97W+ziOjwsXPnzu7ZWA9buHBhNmzYsKxfv37ZlVdema1du7b4ve9+97vZ+PHj24x/+eWXsyuuuCLr169fNnz48Oypp55q95y//vWvsxEjRmR9+/bNRo4cmS1btqyrt9ErnOmzHjZsWIc/u7Nnz+6G3ZSurviZ/jgB+MVWlmX/769AAQBIgr8BBABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIzP8Bo6Ul2HAvKmQAAAAASUVORK5CYII=", "text/html": [ "\n", "