287 lines
15 KiB
Plaintext
287 lines
15 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from Druckrohrleitung_class_file import Druckrohrleitung_class\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"#importing pressure conversion function\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
|
|
"parent = os.path.dirname(current)\n",
|
|
"sys.path.append(parent)\n",
|
|
"from functions.pressure_conversion import pressure_conversion\n",
|
|
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib qt5\n",
|
|
"#define constants pipe\n",
|
|
"\n",
|
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
|
"rho = 1000. # density of water [kg/m³]\n",
|
|
"\n",
|
|
"L = 1000. # length of pipeline [m]\n",
|
|
"D = 0.9 # pipe diameter [m]\n",
|
|
"h_res = 10. # water level in upstream reservoir [m]\n",
|
|
"n = 50000 # number of pipe segments in discretization\n",
|
|
"nt = 12 # number of time steps after initial conditions\n",
|
|
"f_D = 0.01 # Darcy friction factor\n",
|
|
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
|
"h_pipe = 105. # hydraulic head without reservoir [m] \n",
|
|
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
|
"\n",
|
|
"\n",
|
|
"# preparing the discretization and initial conditions\n",
|
|
"initial_flux = 0.8 # m³/s\n",
|
|
"initial_level = h_res # m\n",
|
|
"dx = L/n # length of each pipe segment\n",
|
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
|
"nn = n+1 # number of nodes\n",
|
|
"pl_vec = np.arange(0,nn,1)*dx # pl = pipe-length. position of the nodes on the pipeline\n",
|
|
"t_vec = np.arange(0,nt,1)*dt # time vector\n",
|
|
"h_vec = np.arange(0,nn,1)*h_pipe/n # hydraulic head of pipeline at each node\n",
|
|
"\n",
|
|
"\n",
|
|
"# define constants reservoir\n",
|
|
"conversion_pressure_unit = 'mWS'\n",
|
|
"\n",
|
|
"area_base = 75. # m²\n",
|
|
"area_pipe = (D/2)**2*np.pi # m²\n",
|
|
"critical_level_low = 0. # m\n",
|
|
"critical_level_high = 100. # m\n",
|
|
"\n",
|
|
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
|
"nt_eRK4 = 1 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
|
"simulation_timestep = dt/nt_eRK4"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"V = Ausgleichsbecken_class(area_base, area_pipe, critical_level_low, critical_level_high,simulation_timestep)\n",
|
|
"V.set_steady_state(initial_flux,initial_level,conversion_pressure_unit)\n",
|
|
"\n",
|
|
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
|
"pipe.set_pressure_propagation_velocity(c)\n",
|
|
"pipe.set_number_of_timesteps(nt)\n",
|
|
"pipe.set_steady_state(initial_flux,initial_level,pl_vec,h_vec)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(V.get_current_influx())\n",
|
|
"print(V.get_current_outflux())\n",
|
|
"print(V.get_current_level())\n",
|
|
"print(rho*g*V.get_current_level()-rho/2*(V.get_current_outflux()/area_pipe)**2)\n",
|
|
"print(V.get_current_pressure())\n",
|
|
"print(pipe.get_current_pressure_distribution()[0])\n",
|
|
"print(pipe.get_current_velocity_distribution()*area_pipe)\n",
|
|
"print(pipe.get_current_velocity_distribution())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# initialization for timeloop\n",
|
|
"\n",
|
|
"level_vec = np.zeros_like(t_vec)\n",
|
|
"level_vec[0] = V.get_current_level()\n",
|
|
"\n",
|
|
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
|
"v_old = pipe.get_current_velocity_distribution()\n",
|
|
"p_old = pipe.get_current_pressure_distribution()\n",
|
|
"\n",
|
|
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
|
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
|
" # through the time evolution of the reservoir respectively \n",
|
|
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
|
|
"v_boundary_res = np.zeros_like(t_vec)\n",
|
|
"v_boundary_tur = np.zeros_like(t_vec)\n",
|
|
"p_boundary_res = np.zeros_like(t_vec)\n",
|
|
"p_boundary_tur = np.zeros_like(t_vec)\n",
|
|
"\n",
|
|
"# set the boundary conditions for the first timestep\n",
|
|
"v_boundary_res[0] = v_old[0]\n",
|
|
"v_boundary_tur[0] = v_old[-1] \n",
|
|
"p_boundary_res[0] = p_old[0]\n",
|
|
"p_boundary_tur[0] = p_old[-1]\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig1,axs1 = plt.subplots(2,1)\n",
|
|
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
|
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs1[0].set_ylabel(r'$p$ [mWS]')\n",
|
|
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa',conversion_pressure_unit),marker='.')\n",
|
|
"axs1[0].set_ylim([0.9*np.min(pressure_conversion(p_old,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_old,'Pa',conversion_pressure_unit))])\n",
|
|
"\n",
|
|
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
|
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs1[1].set_ylabel(r'$v$ [m/s]')\n",
|
|
"lo_01, = axs1[1].plot(pl_vec,v_old,marker='.')\n",
|
|
"# axs1[1].set_ylim([0.9*np.min(v_old),1.1*np.max(v_boundary_res)])\n",
|
|
"\n",
|
|
"fig1.tight_layout()\n",
|
|
"plt.pause(1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "KeyboardInterrupt",
|
|
"evalue": "",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32my:\\KELAG\\KS\\KS-PW\\04 Digitalisierung\\KSPWDEV Server\\Digital Trainee Projekt\\DT_Slot_3_Project_Repo\\Druckrohrleitung\\Druckrohrleitung_test_steady_state.ipynb Cell 7\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[1;34m()\u001b[0m\n\u001b[0;32m <a href='vscode-notebook-cell:/y%3A/KELAG/KS/KS-PW/04%20Digitalisierung/KSPWDEV%20Server/Digital%20Trainee%20Projekt/DT_Slot_3_Project_Repo/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb#ch0000006?line=39'>40</a>\u001b[0m fig1\u001b[39m.\u001b[39mcanvas\u001b[39m.\u001b[39mdraw()\n\u001b[0;32m <a href='vscode-notebook-cell:/y%3A/KELAG/KS/KS-PW/04%20Digitalisierung/KSPWDEV%20Server/Digital%20Trainee%20Projekt/DT_Slot_3_Project_Repo/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb#ch0000006?line=40'>41</a>\u001b[0m fig1\u001b[39m.\u001b[39mtight_layout()\n\u001b[1;32m---> <a href='vscode-notebook-cell:/y%3A/KELAG/KS/KS-PW/04%20Digitalisierung/KSPWDEV%20Server/Digital%20Trainee%20Projekt/DT_Slot_3_Project_Repo/Druckrohrleitung/Druckrohrleitung_test_steady_state.ipynb#ch0000006?line=41'>42</a>\u001b[0m plt\u001b[39m.\u001b[39;49mpause(\u001b[39m0.000001\u001b[39;49m)\n",
|
|
"File \u001b[1;32mc:\\ProgramData\\Anaconda3\\envs\\Georg_DT_Slot3\\lib\\site-packages\\matplotlib\\pyplot.py:548\u001b[0m, in \u001b[0;36mpause\u001b[1;34m(interval)\u001b[0m\n\u001b[0;32m 546\u001b[0m canvas\u001b[39m.\u001b[39mdraw_idle()\n\u001b[0;32m 547\u001b[0m show(block\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[1;32m--> 548\u001b[0m canvas\u001b[39m.\u001b[39;49mstart_event_loop(interval)\n\u001b[0;32m 549\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 550\u001b[0m time\u001b[39m.\u001b[39msleep(interval)\n",
|
|
"File \u001b[1;32mc:\\ProgramData\\Anaconda3\\envs\\Georg_DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\backend_qt.py:409\u001b[0m, in \u001b[0;36mFigureCanvasQT.start_event_loop\u001b[1;34m(self, timeout)\u001b[0m\n\u001b[0;32m 405\u001b[0m timer \u001b[39m=\u001b[39m QtCore\u001b[39m.\u001b[39mQTimer\u001b[39m.\u001b[39msingleShot(\u001b[39mint\u001b[39m(timeout \u001b[39m*\u001b[39m \u001b[39m1000\u001b[39m),\n\u001b[0;32m 406\u001b[0m event_loop\u001b[39m.\u001b[39mquit)\n\u001b[0;32m 408\u001b[0m \u001b[39mwith\u001b[39;00m _maybe_allow_interrupt(event_loop):\n\u001b[1;32m--> 409\u001b[0m qt_compat\u001b[39m.\u001b[39m_exec(event_loop)\n",
|
|
"File \u001b[1;32mc:\\ProgramData\\Anaconda3\\envs\\Georg_DT_Slot3\\lib\\contextlib.py:120\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__exit__\u001b[1;34m(self, type, value, traceback)\u001b[0m\n\u001b[0;32m 118\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mtype\u001b[39m \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 119\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 120\u001b[0m \u001b[39mnext\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgen)\n\u001b[0;32m 121\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mStopIteration\u001b[39;00m:\n\u001b[0;32m 122\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mFalse\u001b[39;00m\n",
|
|
"File \u001b[1;32mc:\\ProgramData\\Anaconda3\\envs\\Georg_DT_Slot3\\lib\\site-packages\\matplotlib\\backends\\qt_compat.py:262\u001b[0m, in \u001b[0;36m_maybe_allow_interrupt\u001b[1;34m(qapp)\u001b[0m\n\u001b[0;32m 260\u001b[0m signal\u001b[39m.\u001b[39msignal(signal\u001b[39m.\u001b[39mSIGINT, old_sigint_handler)\n\u001b[0;32m 261\u001b[0m \u001b[39mif\u001b[39;00m handler_args \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> 262\u001b[0m old_sigint_handler(\u001b[39m*\u001b[39;49mhandler_args)\n",
|
|
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"for it_pipe in range(1,nt):\n",
|
|
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
|
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
|
" V.set_pressure = p_old[0]\n",
|
|
" # V.set_outflux = v_old[0]*area_pipe\n",
|
|
" print(V.get_current_pressure())\n",
|
|
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
|
" for it_res in range(nt_eRK4):\n",
|
|
" V.timestep_reservoir_evolution() \n",
|
|
" level_vec[it_pipe] = V.get_current_level() \n",
|
|
"\n",
|
|
" \n",
|
|
" # set boundary conditions for the next timestep of the characteristic method\n",
|
|
" p_boundary_res[it_pipe] = V.get_current_pressure()\n",
|
|
" print(V.get_current_pressure())\n",
|
|
" v_boundary_tur[it_pipe] = initial_flux/area_pipe\n",
|
|
"\n",
|
|
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
|
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
|
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
|
|
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
|
|
"\n",
|
|
" # perform the next timestep via the characteristic method\n",
|
|
" pipe.timestep_characteristic_method()\n",
|
|
"\n",
|
|
" # prepare for next loop\n",
|
|
" p_old = pipe.get_current_pressure_distribution()\n",
|
|
" v_old = pipe.get_current_velocity_distribution()\n",
|
|
"\n",
|
|
" # plot some stuff\n",
|
|
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
|
" lo_00.remove()\n",
|
|
" lo_01.remove()\n",
|
|
" # lo_02.remove()\n",
|
|
" # plot new pressure and velocity distribution in the pipeline\n",
|
|
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa', conversion_pressure_unit),marker='.',c='blue')\n",
|
|
" lo_01, = axs1[1].plot(pl_vec,v_old,marker='.',c='blue')\n",
|
|
" \n",
|
|
" fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n",
|
|
" fig1.canvas.draw()\n",
|
|
" fig1.tight_layout()\n",
|
|
" plt.pause(0.000001)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig2,axs2 = plt.subplots(2,2)\n",
|
|
"axs2[0,0].set_title('Pressure Reservoir')\n",
|
|
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit))\n",
|
|
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[0,0].set_ylabel(r'$p$ [mWS]')\n",
|
|
"axs2[0,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_boundary_res,'Pa',conversion_pressure_unit))])\n",
|
|
"\n",
|
|
"axs2[0,1].set_title('Velocity Reservoir')\n",
|
|
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
|
|
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"axs2[0,1].set_ylim([0.9*np.min(v_boundary_res),1.1*np.max(v_boundary_res)])\n",
|
|
"\n",
|
|
"axs2[1,0].set_title('Pressure Turbine')\n",
|
|
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit))\n",
|
|
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[1,0].set_ylabel(r'$p$ [mWS]')\n",
|
|
"axs2[1,0].set_ylim([0.9*np.min(pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit)),1.1*np.max(pressure_conversion(p_boundary_tur,'Pa',conversion_pressure_unit))])\n",
|
|
"\n",
|
|
"axs2[1,1].set_title('Velocity Turbine')\n",
|
|
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
|
|
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"axs2[1,1].set_ylim([0.9*np.min(v_boundary_tur),1.1*np.max(v_boundary_tur)])\n",
|
|
"\n",
|
|
"fig2.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|