Files
Python-DT_Slot_3/Druckrohrleitung/Druckrohrleitung_class_file.py
2023-01-25 08:50:42 +01:00

298 lines
16 KiB
Python

import os
import sys
import numpy as np
#importing pressure conversion function
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
class Druckrohrleitung_class:
# units
# make sure that units and display units are the same
# units are used to label graphs and disp units are used to have a bearable format when using pythons print()
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
angle_unit = 'rad'
area_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
length_unit = 'm'
pressure_unit = 'Pa' # DONT CHANGE needed for pressure conversion
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
volume_unit = r'$\mathrm{m}^3$'
acceleration_unit_disp = 'm/s²'
angle_unit_disp = 'rad'
area_unit_disp = ''
density_unit_disp = 'kg/m³'
flux_unit_disp = 'm³/s'
length_unit_disp = 'm'
# pressure_unit_disp will be set within the __init__() method
time_unit_disp = 's'
velocity_unit_disp = 'm/s' # for flux and pressure propagation
volume_unit_disp = ''
g = 9.81 # m/s² gravitational acceleration
# init
def __init__(self,total_length,diameter,pipeline_head,number_segments,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
"""
Creates a reservoir with given attributes in this order: \n
Pipeline length [m] \n
Pipeline diameter [m] \n
Pipeline head [m] \n
Number of pipeline segments [1] \n
Darcy friction factor [1] \n
Pressure wave velocity [m/s] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
Density of the liquid [kg/m³] \n
"""
self.length = total_length # total length of the pipeline
self.dia = diameter # diameter of the pipeline
self.head = pipeline_head # hydraulic head of the pipeline
self.n_seg = number_segments # number of segments for the method of characteristics
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
self.c = pw_vel # propagation velocity of pressure wave
self.dt = timestep
self.density = rho # density of the liquid in the pipeline
# derivatives of input attributes
self.angle = np.arcsin(self.head/self.length) # angle of the pipeline
self.A = (diameter/2)**2*np.pi # crossectional area of the pipeline
self.dx = total_length/number_segments # length of each segment
self.x_vec = np.arange(0,(number_segments+1),1)*self.dx # vector giving the distance from each node to the start of the pipeline
self.h_vec = np.arange(0,(number_segments+1),1)*self.head/self.n_seg # vector giving the height difference from each node to the start of the pipeline
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
# setter - set attributes
def set_initial_pressure(self,pressure,display_warning=True):
# initialize the pressure distribution in the pipeline
if display_warning == True:
print('You are setting the pressure distribution in the pipeline manually. \n \
This is not an intended use of this method. \n \
Refer to the set_steady_state() method instead.')
# make sure the vector has the right size
if np.size(pressure) == 1:
p0 = np.full_like(self.x_vec,pressure)
elif np.size(pressure) == np.size(self.x_vec):
p0 = pressure
else:
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.x_vec))
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
self.p_old = p0.copy()
self.p = p0.copy()
self.p0 = p0.copy()
# initialize the vectors in which the minimal and maximal value of the pressure at each node are stores
self.p_min = p0.copy()
self.p_max = p0.copy()
def set_initial_flow_velocity(self,velocity, display_warning=True):
# initialize the velocity distribution in the pipeline
if display_warning == True:
print('You are setting the velocity distribution in the pipeline manually. \n \
This is not an intended use of this method. \n \
Refer to the set_steady_state() method instead.')
# make sure the vector has the right size
if np.size(velocity) == 1:
v0 = np.full_like(self.x_vec,velocity)
elif np.size(velocity) == np.size(self.x_vec):
v0 = velocity
else:
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.x_vec))
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
self.v_old = v0.copy()
self.v = v0.copy()
# initialize the vectors in which the minimal and maximal value of the velocity at each node are stores
self.v_min = v0.copy()
self.v_max = v0.copy()
def set_boundary_conditions_next_timestep(self,p_reservoir,v_turbine):
# derived from the method of characteristics, one can set the boundary conditions for the pressures and flow velocities at the reservoir and the turbine
# the boundary velocity at the turbine is specified by the flux through the turbine or an external boundary condition
# the pressure at the turbine will be calculated using the forward characteristic
# the boundary pressure at the reservoir is specified by the level in the reservoir of an external boundary condition
# the velocity at the reservoir will be calculated using the backward characteristic
# constants for a cleaner formula
rho = self.density
c = self.c
f_D = self.f_D
dt = self.dt
D = self.dia
g = self.g
alpha = self.angle
p_old_tur = self.p_old[-2] # @ second to last node (the one before the turbine)
v_old_tur = self.v_old[-2] # @ second to last node (the one before the turbine)
p_old_res = self.p_old[1] # @ second node (the one after the reservoir)
v_old_res = self.v_old[1] # @ second node (the one after the reservoir)
# set the boundary conditions derived from reservoir and turbine
v_boundary_tur = v_turbine # at new timestep
p_boundary_res = p_reservoir # at new timestep
# calculate the missing boundary conditions
v_boundary_res = v_old_res+1/(rho*c)*(p_boundary_res-p_old_res)+dt*g*np.sin(alpha)-f_D*dt/(2*D)*abs(v_old_res)*v_old_res
p_boundary_tur = p_old_tur-rho*c*(v_boundary_tur-v_old_tur)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old_tur)*v_old_tur
# write boundary conditions to the velocity/pressure vectors of the next timestep
self.v[0] = v_boundary_res
self.v[-1] = v_boundary_tur
self.p[0] = p_boundary_res
self.p[-1] = p_boundary_tur
def set_steady_state(self,ss_flux,ss_pressure_res):
# set the pressure and velocity distributions, that allow a constant flow of water from the (steady-state) reservoir to the (steady-state) turbine
# the flow velocity is given by the constant flow through the pipe
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
ss_pressure = ss_pressure_res+(self.density*self.g*self.h_vec)-(self.f_D*self.x_vec/self.dia*self.density/2*ss_v0**2)
# set the initial conditions
self.set_initial_flow_velocity(ss_v0,display_warning=False)
self.set_initial_pressure(ss_pressure,display_warning=False)
# getter - return attributes
def get_info(self):
new_line = '\n'
angle_deg = round(self.angle/np.pi*180,3)
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The pipeline has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Length = {self.length:<10} {self.length_unit_disp} {new_line}"
f"Diameter = {self.dia:<10} {self.length_unit_disp} {new_line}"
f"Hydraulic head = {self.head:<10} {self.length_unit_disp} {new_line}"
f"Number of segments = {self.n_seg:<10} {new_line}"
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
f"Length per segments = {self.dx:<10} {self.length_unit_disp} {new_line}"
f"Pipeline angle = {round(self.angle,3):<10} {self.angle_unit_disp} {new_line}"
f"Pipeline angle = {angle_deg}° {new_line}"
f"Darcy friction factor = {self.f_D:<10} {new_line}"
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
print(print_str)
def get_current_pressure_distribution(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
return self.p
def get_current_velocity_distribution(self):
return self.v
def get_current_flux_distribution(self):
return self.v*self.A
def get_lowest_pressure_per_node(self,disp_flag=False):
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
return self.p_min
def get_highest_pressure_per_node(self,disp_flag=False):
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
return self.p_max
def get_lowest_velocity_per_node(self):
return self.v_min
def get_highest_velocity_per_node(self):
return self.v_max
def get_lowest_flux_per_node(self):
return self.v_min*self.A
def get_highest_flux_per_node(self):
return self.v_max*self.A
def get_initial_pressure_distribution(self,disp_flag=False):
# disp_flag if one wants to directly plot the return of this method
if disp_flag == True: # convert to pressure unit disp
return pressure_conversion(self.p0,self.pressure_unit,self.pressure_unit_disp)
elif disp_flag == False: # stay in Pa
return self.p0
def timestep_characteristic_method(self):
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
# constants for cleaner formula
nn = self.n_seg+1 # number of nodes
rho = self.density # density of liquid
c = self.c # pressure propagation velocity
f_D = self.f_D # Darcy friction coefficient
dt = self.dt # timestep
D = self.dia # pipeline diameter
g = self.g # graviational acceleration
alpha = self.angle # pipeline angle
# Vectorize this loop?
for i in range(1,nn-1):
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1])-0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
# update overall min and max values for pressure and velocity per node
self.p_min = np.minimum(self.p_min,self.p)
self.p_max = np.maximum(self.p_max,self.p)
self.v_min = np.minimum(self.v_min,self.v)
self.v_max = np.maximum(self.v_max,self.v)
# prepare for next call
# use .copy() to write data to another memory location and avoid the usual python reference pointer
# else one can overwrite data by accidient and change two variables at once without noticing
self.p_old = self.p.copy()
self.v_old = self.v.copy()
def timestep_characteristic_method_vectorized(self):
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
# constants for cleaner formula
rho = self.density # density of liquid
c = self.c # pressure propagation velocity
f_D = self.f_D # Darcy friction coefficient
dt = self.dt # timestep
D = self.dia # pipeline diameter
g = self.g # graviational acceleration
alpha = self.angle # pipeline angle
# Vectorized loop
self.v[1:-1] = 0.5*(self.v_old[2:]+self.v_old[:-2])-0.5/(rho*c)*(self.p_old[2:]-self.p_old[:-2]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(np.abs(self.v_old[2:])*self.v_old[2:]+np.abs(self.v_old[:-2])*self.v_old[:-2])
self.p[1:-1] = 0.5*(self.p_old[2:]+self.p_old[:-2])-0.5*rho*c*(self.v_old[2:]-self.v_old[:-2]) \
+f_D*rho*c*dt/(4*D)*(np.abs(self.v_old[2:])*self.v_old[2:]-np.abs(self.v_old[:-2])*self.v_old[:-2])
# update overall min and max values for pressure and velocity per node
self.p_min = np.minimum(self.p_min,self.p)
self.p_max = np.maximum(self.p_max,self.p)
self.v_min = np.minimum(self.v_min,self.v)
self.v_max = np.maximum(self.v_max,self.v)
# prepare for next call
# use .copy() to write data to another memory location and avoid the usual python reference pointer
# else one can overwrite data by accidient and change two variables at once without noticing
self.p_old = self.p.copy()
self.v_old = self.v.copy()