due to turbine-pipeline interatction via a convergence method in the turbine and a "damping" trick on the reservoir velocity plus: code cleanup with consistent naming of variables
227 lines
11 KiB
Python
227 lines
11 KiB
Python
import numpy as np
|
|
|
|
#importing pressure conversion function
|
|
import sys
|
|
import os
|
|
current = os.path.dirname(os.path.realpath(__file__))
|
|
parent = os.path.dirname(current)
|
|
sys.path.append(parent)
|
|
from functions.pressure_conversion import pressure_conversion
|
|
|
|
class Druckrohrleitung_class:
|
|
# units
|
|
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
|
|
angle_unit = 'rad'
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
length_unit = 'm'
|
|
pressure_unit = 'Pa'
|
|
time_unit = 's'
|
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
|
|
acceleration_unit_disp = 'm/s²'
|
|
angle_unit_disp = 'rad'
|
|
area_unit_disp = 'm²'
|
|
density_unit_disp = 'kg/m³'
|
|
flux_unit_disp = 'm³/s'
|
|
length_unit_disp = 'm'
|
|
time_unit_disp = 's'
|
|
velocity_unit_disp = 'm/s' # for flux and pressure propagation
|
|
volume_unit_disp = 'm³'
|
|
|
|
g = 9.81
|
|
|
|
# init
|
|
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,pw_vel,timestep,pressure_unit_disp,rho=1000):
|
|
self.length = total_length # total length of the pipeline
|
|
self.dia = diameter # diameter of the pipeline
|
|
self.n_seg = number_segments # number of segments for the method of characteristics
|
|
self.angle = pipeline_angle # angle of the pipeline
|
|
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
|
|
self.c = pw_vel
|
|
self.dt = timestep
|
|
self.density = rho # density of the liquid in the pipeline
|
|
|
|
self.A = (diameter/2)**2*np.pi
|
|
|
|
self.dx = total_length/number_segments # length of each segment
|
|
self.x_vec = np.arange(0,(number_segments+1),1)*self.dx # vector giving the distance from each node to the start of the pipeline
|
|
|
|
self.pressure_unit_disp = pressure_unit_disp
|
|
|
|
# setter
|
|
def set_initial_pressure(self,pressure):
|
|
# initialize the pressure distribution in the pipeline
|
|
if np.size(pressure) == 1:
|
|
p0 = np.full_like(self.x_vec,pressure)
|
|
elif np.size(pressure) == np.size(self.x_vec):
|
|
p0 = pressure
|
|
else:
|
|
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.x_vec))
|
|
|
|
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
|
|
self.p_old = p0.copy()
|
|
self.p = p0.copy()
|
|
self.p_min = p0.copy()
|
|
self.p_max = p0.copy()
|
|
|
|
def set_initial_flow_velocity(self,velocity):
|
|
# initialize the velocity distribution in the pipeline
|
|
if np.size(velocity) == 1:
|
|
v0 = np.full_like(self.x_vec,velocity)
|
|
elif np.size(velocity) == np.size(self.x_vec):
|
|
v0 = velocity
|
|
else:
|
|
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.x_vec))
|
|
|
|
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
|
|
self.v_old = v0.copy()
|
|
self.v = v0.copy()
|
|
self.v_min = v0.copy()
|
|
self.v_max = v0.copy()
|
|
|
|
def set_boundary_conditions_next_timestep(self,p_reservoir,v_turbine):
|
|
# derived from the method of characteristics, one can set the boundary conditions for the pressures and flow velocities at the reservoir and the turbine
|
|
# the boundary velocity at the turbine is specified by the flux through the turbine or an external boundary condition
|
|
# the pressure at the turbine will be calculated using the forward characteristic
|
|
# the boundary pressure at the reservoir is specified by the level in the reservoir of an external boundary condition
|
|
# the velocity at the reservoir will be calculated using the backward characteristic
|
|
|
|
# constants for a cleaner formula
|
|
rho = self.density
|
|
c = self.c
|
|
f_D = self.f_D
|
|
dt = self.dt
|
|
D = self.dia
|
|
g = self.g
|
|
alpha = self.angle
|
|
p_old_tur = self.p_old[-2] # @ second to last node (the one before the turbine)
|
|
v_old_tur = self.v_old[-2] # @ second to last node (the one before the turbine)
|
|
p_old_res = self.p_old[1] # @ second node (the one after the reservoir)
|
|
v_old_res = self.v_old[1] # @ second node (the one after the reservoir)
|
|
# set the boundary conditions derived from reservoir and turbine
|
|
v_boundary_tur = v_turbine # at new timestep
|
|
p_boundary_res = p_reservoir # at new timestep
|
|
# calculate the missing boundary conditions
|
|
v_boundary_res = v_old_res+1/(rho*c)*(p_boundary_res-p_old_res)+dt*g*np.sin(alpha)-f_D*dt/(2*D)*abs(v_old_res)*v_old_res
|
|
p_boundary_tur = p_old_tur-rho*c*(v_boundary_tur-v_old_tur)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old_tur)*v_old_tur
|
|
|
|
# write boundary conditions to the velocity/pressure vectors of the next timestep
|
|
self.v[0] = v_boundary_res
|
|
self.v[-1] = v_boundary_tur
|
|
self.p[0] = p_boundary_res
|
|
self.p[-1] = p_boundary_tur
|
|
|
|
def set_steady_state(self,ss_flux,ss_level_reservoir,area_reservoir,x_vec,h_vec):
|
|
# set the pressure and velocity distributions, that allow a constant flow of water from the (steady-state) reservoir to the (steady-state) turbine
|
|
# the flow velocity is given by the constant flow through the pipe
|
|
ss_v0 = np.full_like(self.x_vec,ss_flux/self.A)
|
|
|
|
# the static pressure is given by static state pressure of the reservoir, corrected for the hydraulic head of the pipe and friction losses
|
|
ss_v_in_res = abs(ss_flux/area_reservoir)
|
|
ss_v_out_res = abs(ss_flux/self.A)
|
|
ss_pressure_res = self.density*self.g*(ss_level_reservoir)+self.density*ss_v_out_res*(ss_v_in_res-ss_v_out_res)
|
|
ss_pressure = ss_pressure_res+(self.density*self.g*h_vec)-(self.f_D*x_vec/self.dia*self.density/2*ss_v0**2)
|
|
|
|
self.set_initial_flow_velocity(ss_v0)
|
|
self.set_initial_pressure(ss_pressure)
|
|
|
|
# getter
|
|
def get_info(self):
|
|
new_line = '\n'
|
|
angle_deg = round(self.angle/np.pi*180,3)
|
|
|
|
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The pipeline has the following attributes: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Length = {self.length:<10} {self.length_unit_disp} {new_line}"
|
|
f"Diameter = {self.dia:<10} {self.length_unit_disp} {new_line}"
|
|
f"Number of segments = {self.n_seg:<10} {new_line}"
|
|
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
|
|
f"Length per segments = {self.dx:<10} {self.length_unit_disp} {new_line}"
|
|
f"Pipeline angle = {round(self.angle,3):<10} {self.angle_unit_disp} {new_line}"
|
|
f"Pipeline angle = {angle_deg}° {new_line}"
|
|
f"Darcy friction factor = {self.f_D:<10} {new_line}"
|
|
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
|
|
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_disp} {new_line}"
|
|
f"Simulation timestep = {self.dt:<10} {self.time_unit_disp} {new_line}"
|
|
f"Number of timesteps = {self.nt:<10} {new_line}"
|
|
f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_disp} {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
|
|
|
|
print(print_str)
|
|
|
|
def get_current_pressure_distribution(self,disp=False):
|
|
if disp == True:
|
|
return pressure_conversion(self.p,self.pressure_unit,self.pressure_unit_disp)
|
|
elif disp == False:
|
|
return self.p
|
|
|
|
def get_current_velocity_distribution(self):
|
|
return self.v
|
|
|
|
def get_current_flux_distribution(self):
|
|
return self.v*self.A
|
|
|
|
def get_lowest_pressure_per_node(self,disp=False):
|
|
if disp == True:
|
|
return pressure_conversion(self.p_min,self.pressure_unit,self.pressure_unit_disp)
|
|
elif disp == False:
|
|
return self.p_min
|
|
|
|
def get_highest_pressure_per_node(self,disp=False):
|
|
if disp == True:
|
|
return pressure_conversion(self.p_max,self.pressure_unit,self.pressure_unit_disp)
|
|
elif disp == False:
|
|
return self.p_max
|
|
|
|
def get_lowest_velocity_per_node(self):
|
|
return self.v_min
|
|
|
|
def get_highest_velocity_per_node(self):
|
|
return self.v_max
|
|
|
|
def get_lowest_flux_per_node(self):
|
|
return self.v_min*self.A
|
|
|
|
def get_highest_flux_per_node(self):
|
|
return self.v_max*self.A
|
|
|
|
|
|
def timestep_characteristic_method(self):
|
|
# use the method of characteristics to calculate the pressure and velocities at all nodes except the boundary ones
|
|
# they are set with the .set_boundary_conditions_next_timestep() method beforehand
|
|
|
|
nn = self.n_seg+1 # number of nodes
|
|
rho = self.density # density of liquid
|
|
c = self.c # pressure propagation velocity
|
|
f_D = self.f_D # Darcy friction coefficient
|
|
dt = self.dt # timestep
|
|
D = self.dia # pipeline diametet
|
|
g = self.g # graviational acceleration
|
|
alpha = self.angle # pipeline angle
|
|
|
|
# Vectorize this loop?
|
|
for i in range(1,nn-1):
|
|
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
|
|
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
|
|
|
|
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1]) - 0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
|
|
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
|
|
|
|
# update overall min and max values for pressure and velocity per node
|
|
self.p_min = np.minimum(self.p_min,self.p)
|
|
self.p_max = np.maximum(self.p_max,self.p)
|
|
self.v_min = np.minimum(self.v_min,self.v)
|
|
self.v_max = np.maximum(self.v_max,self.v)
|
|
|
|
# prepare for next call
|
|
# use .copy() to write data to another memory location and avoid the usual python reference pointer
|
|
# else one can overwrite data by accidient and change two variables at once without noticing
|
|
self.p_old = self.p.copy()
|
|
self.v_old = self.v.copy()
|