Files
Python-DT_Slot_3/Ausgleichsbecken/Ausgleichsbecken_class_file.py
Brantegger Georg f3983cc007 updated Ausgleichbecken_steady_state test to run longer and
run empty at the end on purpose
2023-02-09 14:15:35 +01:00

286 lines
14 KiB
Python

# import modules for general use
import os # to import functions from other folders
import sys # to import functions from other folders
from logging import \
exception # to throw an exception when a specific condition is met
import numpy as np
#importing pressure conversion function
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
def FODE_function(x_out,h,A,A_a,p,rho,g):
# (FODE ... first order differential equation)
# describes the change in outflux velocity from a reservoir
# based on the outflux formula by Andreas Malcherek
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
# adapted for a pressurized pipeline into which the reservoir effuses
# and flow direction
# see documentation in word-file
# x_out ... effusion velocity
# h ... level in the reservoir
# A_a ... Area_outflux
# A ... Area_reservoir_base
# g ... gravitational acceleration
# rho ... density of the liquid in the reservoir
f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)
return f
class Ausgleichsbecken_class:
# units
# make sure that units and display units are the same!
# units are used to label graphs and disp units are used to have good formatting when using pythons print()
area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm'
pressure_unit = 'Pa' # !DO NOT CHANGE! needed for pressure conversion
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
volume_unit = r'$\mathrm{m}^3$'
area_unit_disp = ''
area_outflux_unit_disp = ''
density_unit_disp = 'kg/m³'
flux_unit_disp = 'm³/s'
level_unit_disp = 'm'
# pressure_unit_disp will be set within the __init__() method
time_unit_disp = 's'
velocity_unit_disp = 'm/s'
volume_unit_disp = ''
g = 9.81 # m/s² gravitational acceleration
# init
# see docstring below
def __init__(self,area,area_outflux,timestep,pressure_unit_disp,level_min=0,level_max=np.inf,rho = 1000.):
"""
Creates a reservoir with given attributes in this order: \n
Base Area [m²] \n
Outflux Area [m²] \n
Simulation timestep [s] \n
Pressure unit for displaying [string] \n
Minimum level [m] \n
Maximum level [m] \n
Density of the liquid [kg/m³] \n
"""
#set initial attributes
self.area = area # base area of the cuboid reservoir
self.area_out = area_outflux # area of the outlet towards the pipeline
self.density = rho # density of the liquid in the system
self.level_min = level_min # lowest allowed water level - warning yet to be implemented
self.level_max = level_max # highest allowed water level - warning yet to be implemented
self.pressure_unit_disp = pressure_unit_disp # pressure unit for displaying
self.timestep = timestep # timestep in the time evolution method
# initialize for get_info() (if get_info() gets called before set_steady_state() was ever executed)
# is also used to check if set_steady_state() was ever executed
self.influx = -np.inf
self.outflux = -np.inf
self.level = -np.inf
self.pressure = -np.inf
self.volume = -np.inf
# setter - set attributes
def set_initial_level(self,initial_level):
# sets the initial level in the reservoir and should only be called during initialization
if self.level == -np.inf:
self.level = initial_level
self.update_volume(set_flag=True)
else:
raise Exception('Initial level was already set once. Use the .update_level(self,timestep,set_flag=True) method to update level based on net flux.')
def set_initial_pressure(self,initial_pressure):
# sets the initial static pressure present at the outlet of the reservoir and should only be called during initialization
if self.pressure == -np.inf:
self.pressure = initial_pressure
else:
raise Exception('Initial pressure was already set once. Use the .update_pressure(self) method to update pressure based on current level.')
def set_influx(self,influx):
# sets influx to the reservoir in m³/s
# positive influx means that liquid flows into the reservoir
self.influx = influx
def set_outflux(self,outflux,display_warning=True):
# sets outflux to the reservoir in m³/s
# positive outflux means that liquid flows out of reservoir the reservoir
if display_warning == True:
print('You are setting the outflux from the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the timestep_reservoir_evolution() or set_steady_state() method instead.')
self.outflux = outflux
def set_level(self,level,display_warning=True):
# sets level in the reservoir in m
if display_warning == True:
print('You are setting the level of the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the update_level() or set_steady_state() method instead.')
self.level = level
def set_pressure(self,pressure,display_warning=True):
# sets pressure in the pipeline just below the reservoir in Pa
if display_warning == True:
print('You are setting the pressure below the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the update_pressure() or set_steady_state() method instead.')
self.pressure = pressure
def set_volume(self,volume,display_warning=True):
# sets volume in reservoir
if display_warning == True:
print('You are setting the volume in the reservoir manually. \n \
This is not an intended use of this method. \n \
Refer to the .update_volume() or set_initial_level() or set_steady_state() method instead.')
self.volume = volume
def set_steady_state(self,ss_influx,ss_level):
# set the reservoir to steady state (ss) condition in which the net flux is zero
# set pressure acting on the outflux area so that the level stays constant
ss_outflux = ss_influx
ss_influx_vel = abs(ss_influx/self.area)
ss_outflux_vel = abs(ss_outflux/self.area_out)
# see word document for explaination on how to arrive at the ss pressure formula
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
# use setter methods to set the attributes to their steady state values
self.set_influx(ss_influx)
self.set_initial_level(ss_level)
self.set_initial_pressure(ss_pressure)
self.set_outflux(ss_outflux,display_warning=False)
# getter - return attributes
def get_info(self, full = False):
# prints out the info on the current state of the reservoir
# full = True gives more info
new_line = '\n'
if self.pressure != np.inf:
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_disp)
if self.outflux != np.inf:
outflux_vel = self.outflux/self.area_out
if full == True:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Base area = {self.area:<10} {self.area_unit_disp} {new_line}"
f"Outflux area = {round(self.area_out,3):<10} {self.area_outflux_unit_disp} {new_line}"
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
f"Critical level low = {self.level_min:<10} {self.level_unit_disp} {new_line}"
f"Critical level high = {self.level_max:<10} {self.level_unit_disp} {new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_disp} {new_line}"
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"Simulation timestep = {self.timestep:<10} {self.time_unit_disp} {new_line}"
f"Density of liquid = {self.density:<10} {self.density_unit_disp} {new_line}"
f"----------------------------- {new_line}")
else:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The current attributes are: {new_line}"
f"----------------------------- {new_line}"
f"Current level = {self.level:<10} {self.level_unit_disp}{new_line}"
f"Current volume = {self.volume:<10} {self.volume_unit_disp} {new_line}"
f"Current influx = {round(self.influx,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux = {round(self.outflux,3):<10} {self.flux_unit_disp} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_disp} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_disp} {new_line}"
f"----------------------------- {new_line}")
# print the info to console
print(print_str)
def get_current_influx(self):
return self.influx
def get_current_outflux(self):
return self.outflux
def get_current_level(self):
return self.level
def get_current_pressure(self):
return self.pressure
def get_current_volume(self):
return self.volume
# update methods - update attributes based on some parameter
def update_level(self,timestep,set_flag=False):
# update level based on net flux and timestep by calculating the volume change in
# the timestep and then convert the new volume to a level by assuming a cuboid reservoir
# there is no call of the update_volume() function because I need the updated level from half a timestep in the reservoir evolution
# if update_volume() was called within this function, the script would produce wrong results.
net_flux = self.influx-self.outflux
delta_level = net_flux*timestep/self.area
level_new = (self.level+delta_level)
# raise exception error if level in reservoir falls below 0.01 ######################### has to be commented out if used in loop
if level_new < 0.01:
raise Exception('Reservoir ran emtpy')
# set flag is necessary because update_level() is used to get a halfstep value in the time evoultion
if set_flag == True:
self.set_level(level_new,display_warning=False)
elif set_flag == False:
return level_new
def update_pressure(self,set_flag=False):
# update pressure based on level and flux velocities
# see word document for explaination
influx_vel = abs(self.influx/self.area)
outflux_vel = abs(self.outflux/self.area_out)
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
# set flag for consistency with update_level()
if set_flag ==True:
self.set_pressure(p_new,display_warning=False)
elif set_flag == False:
return p_new
def update_volume(self,set_flag=False):
volume_new = self.level*self.area
# set flag for consistency with update_level()
if set_flag == True:
self.set_volume(volume_new,display_warning=False)
elif set_flag == False:
return volume_new
#methods
def timestep_reservoir_evolution(self):
# update outflux, level, pressure and volume based on current pipeline pressure and waterlevel in reservoir
# solve the FODE of the outflux velocity for one timestep using explicit four step Runge-Kutta method
# get some variables
dt = self.timestep
rho = self.density
g = self.g
A = self.area
A_a = self.area_out
yn = self.outflux/A_a # outflux velocity
h = self.level
h_hs = self.update_level(dt/2)
p = self.pressure
p_hs = self.pressure + rho*g*(h_hs-h)
# perform explicit 4 step Runge Kutta
Y1 = yn
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
# set/update the attributes to their new values
self.set_outflux(ynp1*A_a,display_warning=False)
self.update_level(dt,set_flag=True)
self.update_volume(set_flag=True)
self.update_pressure(set_flag=True)