Files
Python-DT_Slot_3/KW Vorlage.ipynb
Brantegger Georg df0fb4f0ed small changes
2023-02-09 13:11:02 +01:00

755 lines
40 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"to dos:\n",
"Francis Turbine in Turbine umbennenen\n",
"Fall für andere Anzahl an Turbinen in Dokumentation aufnehmen\n",
"DevBranch wegwerfen"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Markdown for converting jupyter notebook into a python script for looping\n",
"- make a copy of \"KW Vorlage.ipynb\" (will be deleted later) and open it\n",
"- changes to called functions\n",
" - in the Ausgleichsbecken_class file, in the update_level() method, comment out the raise_Exception('Reservoir ran empty') lines 228/229\n",
" - this might lead to a warning, for a divide by 0 situation, which can usually be ignored:\n",
" - RuntimeWarning: invalid value encountered in double_scalars: f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)\n",
"- changes to code cells\n",
" - for code cell 1\n",
" - delete last code section \"backup...\"\n",
" - toggle comment\n",
" - change Area_, Kp_ and Ti_list for loop\n",
" - for code cell 2\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 3\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 4\n",
" - delete entire code cell to avoid printing too much to console\n",
" - for code cell 5\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 6\n",
" - delete entire code cell because plotting the guide vane opening is not necessary in loop scenario\n",
" - for code cell 7\n",
" - delete entire code cell because plotting is not necessary in loop scenario and costs performance\n",
" - for code cell 8\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - delete the section from line 65 to the bottom - plotting is not necessary\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
" - for code cell 9\n",
" - delete entire code cell because plotting is handled in code cell 10\n",
" - for code cell 10\n",
" - make adaptions outlined in markdown above\n",
" - delete markdown cell\n",
" - delete/comment out line 52 plt.show(), which stops the loop until the figure is closed\n",
" - indent the whole cell by 3 tabstops to align with the loop started in code cell 1\n",
"- delete first markdown cell\n",
"- converting to Python file\n",
" - click \"Export\"\n",
" - choose Python script\n",
" - save Pyhton script with proper name\n",
"- (optional) format Python script\n",
" - select \"# %%\"\n",
" - press and hold \"strg\", press and hold \"d\" (selects all occurances of \"# %%\" after a few seconds)\n",
" - press \"strg\"+\"shift\"+\"K\" once to delete all lines that are selected\n",
"- final touches\n",
" - run the loop with a small test set and fix everything i forgot ;-)\n",
" - delete the copied \"KW Vorlage copy.ipynb\"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# code cell 0\n",
"import os\n",
"import sys\n",
"from datetime import datetime\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Kraftwerk.Kraftwerk_class_file import Kraftwerk_class\n",
"from Regler.Regler_class_file import PI_controller_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# # code cell 1\n",
"# # for loop creation\n",
"\n",
"# Area_list = np.round(np.arange(40.,90.,5.),1)\n",
"# Kp_list = np.round(np.arange(0.1,3.0,0.2),1)\n",
"# Ti_list = np.round(np.arange(10.,300.,10.),1)\n",
"\n",
"# # # if one wants to use the loop to save 1 specific configuration:\n",
"# # desired_area = 60\n",
"# # desired_KP = 0.7\n",
"# # desired_ti = 200.\n",
"\n",
"# # Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"# # Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"# # Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"\n",
"# for i in range(np.size(Area_list)):\n",
"# for j in range(np.size(Kp_list)):\n",
"# for k in range(np.size(Ti_list)):\n",
"# now = datetime.now()\n",
"# current_time = now.strftime(\"%H:%M:%S\")\n",
"# print(\"Current Time =\", current_time)\n",
"\n",
"# print('i = ',i, '/ ', str(np.size(Area_list)-1))\n",
"# print('j = ',j, '/ ', str(np.size(Kp_list)-1))\n",
"# print('k = ',k, '/ ', str(np.size(Ti_list)-1))\n",
"# print('area = ',Area_list[i])\n",
"# print('K_p = ',Kp_list[j])\n",
"# print('T_i = ',Ti_list[k])\n",
"\n",
"# with open('log.txt','a') as f:\n",
"# f.write(\"Current Time =\" + current_time + '\\n')\n",
"# f.write('i = '+str(i)+ '/ '+ str(np.size(Area_list)-1)+ '\\n')\n",
"# f.write('j = '+str(j)+ '/ '+ str(np.size(Kp_list)-1)+ '\\n')\n",
"# f.write('k = '+str(k)+ '/ '+ str(np.size(Ti_list)-1)+ '\\n')\n",
"# f.write('area = '+str(Area_list[i])+ '\\n')\n",
"# f.write('K_p = '+str(Kp_list[j])+ '\\n')\n",
"# f.write('T_i = '+str(Ti_list[k])+ '\\n')\n",
"\n",
"# backup if script is used as jupyter notebook\n",
"desired_area = 60\n",
"desired_KP = 0.7\n",
"desired_ti = 200.\n",
"\n",
"Area_list = np.round(np.arange(desired_area,desired_area+1.,1.),1)\n",
"Kp_list = np.round(np.arange(desired_KP,desired_KP+1.,1),1)\n",
"Ti_list = np.round(np.arange(desired_ti,desired_ti+1.,1.),1)\n",
"i = 0\n",
"j = 0\n",
"k = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- adapt tubine parameters\n",
"- adapt controller parameters\n",
"- adapt pipeline parameters\n",
"- adapt reservoir parameters\n",
"- see end of code cell 1 for reservoir base area, controller K_p and T_i\n",
"\n",
"- choose between initialization by flux or guide vane opening - toggle comment in lines 62/63\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# code cell 2\n",
"# define constants\n",
"\n",
" # for physics\n",
"g = 9.81 # [m/s²] gravitational acceleration \n",
"rho = 0.9982067*1e3 # [kg/m³] density of water \n",
"pUnit_calc = 'Pa' # [string] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"pUnit_conv = 'mWS' # [string] for pressure conversion in print statements and plot labels\n",
"\n",
" # for KW OL \n",
"OL_T1_Q_nenn = 1.7 # [m³/s] nominal flux of turbine \n",
"OL_T1_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_p_pseudo = 1.1*OL_T1_p_nenn # ficticious pressure applied to OL turbines to avoid LA>1 error caused by unfortunate rounding\n",
"OL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # simulation of \"Bacheinzug\"\n",
"OL_T2_Q_nenn = 1.5 # [m³/s] nominal flux of turbine \n",
"OL_T2_p_nenn = pressure_conversion(1,'bar',pUnit_calc) # [Pa] nominal pressure of turbine ## p_nenn wird konstant gehalten, Wert ist also fiktiv\n",
"OL_T2_closingTime = 600. # [s] closing time of turbine\n",
"\n",
" # for KW UL\n",
"UL_T1_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T1_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T1_closingTime = 30. # [s] closing time of turbine\n",
"\n",
"UL_T2_Q_nenn = 1.6 # [m³/s] nominal flux of turbine \n",
"UL_T2_p_nenn = pressure_conversion(60.,'mWS',pUnit_calc) # [Pa] nominal pressure of turbine \n",
"UL_T2_closingTime = 30. # [s] closing time of turbine\n",
"\n",
" # for PI controller\n",
"Con_targetLevel = 1.25 # [m] target level of the PI controller\n",
"Con_K_p = Kp_list[j] # [-] proportionality constant of PI controller\n",
"Con_T_i = Ti_list[k] # [s] timespan in which a steady state error is corrected by the intergal term\n",
"Con_deadbandRange = 0.00 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
"\n",
" # for pipeline\n",
"Pip_length = 2300. # [m] length of pipeline\n",
"Pip_dia = 1.5 # [m] diameter of pipeline\n",
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
"Pip_head = 68. # [m] hydraulic head of pipeline without reservoir\n",
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
"Pip_f_D = 0.015 # [-] Darcy friction factor\n",
"Pip_pw_vel = 600. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
" # derivatives of the pipeline constants\n",
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertical distance of each node from the upstream reservoir\n",
"\n",
" # for reservoir\n",
"Res_area_base = Area_list[i] # [m²] total base are of the cuboid reservoir \n",
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
"Res_level_crit_lo = Con_targetLevel-0.5 # [m] for yet-to-be-implemented warnings\n",
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
"\n",
" # for general simulation\n",
"# flux_init = OL_T1_Q_nenn+OL_T2_Q_nenn # [m³/s] initial flux through whole system for steady state initialization \n",
"OL_LAs_init = [1.,0.3] # [vec] initial guide vane openings of OL-KW\n",
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
"simTime_target = 1200. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- choose between initialization by flux or guide vane opening - toggle comments in lines 12 and 14+15\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# code cell 3\n",
"# create objects\n",
"\n",
"# influx setting turbines\n",
"OL_T1 = Francis_Turbine(OL_T1_Q_nenn,OL_T1_p_nenn,OL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"OL_T2 = Francis_Turbine(OL_T2_Q_nenn,OL_T2_p_nenn,OL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_OL = Kraftwerk_class()\n",
"KW_OL.add_turbine(OL_T1)\n",
"KW_OL.add_turbine(OL_T2)\n",
"\n",
"# KW_OL.set_steady_state_by_flux(flux_init,OL_p_pseudo)\n",
"\n",
"KW_OL.set_steady_state_by_LA(OL_LAs_init,OL_p_pseudo)\n",
"flux_init = KW_OL.get_current_Q()\n",
"\n",
"# Upstream reservoir\n",
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,pUnit_conv,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
"reservoir.set_steady_state(flux_init,level_init)\n",
"\n",
"# pipeline\n",
"pipe = Druckrohrleitung_class(Pip_length,Pip_dia,Pip_head,Pip_n_seg,Pip_f_D,Pip_pw_vel,Pip_dt,pUnit_conv,rho)\n",
"pipe.set_steady_state(flux_init,reservoir.get_current_pressure())\n",
"\n",
"# downstream turbines\n",
"UL_T1 = Francis_Turbine(UL_T1_Q_nenn,UL_T1_p_nenn,UL_T1_closingTime,Pip_dt,pUnit_conv)\n",
"UL_T2 = Francis_Turbine(UL_T2_Q_nenn,UL_T2_p_nenn,UL_T2_closingTime,Pip_dt,pUnit_conv)\n",
"\n",
"KW_UL = Kraftwerk_class()\n",
"KW_UL.add_turbine(UL_T1)\n",
"KW_UL.add_turbine(UL_T2)\n",
"\n",
"KW_UL.set_steady_state_by_flux(flux_init,pipe.get_current_pressure_distribution()[-1])\n",
"\n",
"# level controller\n",
"level_control = PI_controller_class(Con_targetLevel,Con_deadbandRange,Con_K_p,Con_T_i,Pip_dt)\n",
"level_control.set_control_variable(UL_T1.get_current_LA(),display_warning=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# code cell 4\n",
"# using the get_info() methods\n",
"\n",
"# print(KW_OL.get_info())\n",
"# print(reservoir.get_info(full=True))\n",
"# print(pipe.get_info())\n",
"# print(KW_UL.get_info())\n",
"# print(level_control.get_info())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change the influx through the OL HPP by manually setting the guide vane openings\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# code cell 5\n",
"# initialization for Timeloop\n",
"\n",
"# OL KW\n",
" # manual input to modulate influx\n",
"OL_T1_LA_soll_vec = np.full_like(t_vec,OL_T1.get_current_LA()) # storing the target value for the guide van opening\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-100)):] = 0. # changing the target value for the guide vane opening at t = 100 s\n",
"OL_T1_LA_soll_vec[np.argmin(np.abs(t_vec-600)):] = OL_T1_LA_soll_vec[0] # changing the target value for the guide vane opening at t = 600 s \n",
"\n",
"\n",
"OL_T2_LA_soll_vec = np.full_like(t_vec,OL_T2.get_current_LA()) # storing the target value for the guide van opening\n",
"\n",
"# creating a bunch of vectors that are used to store usefull information - either for analysis or for the following step in the timeloop\n",
"\n",
"# reservoir\n",
"Q_in_vec = np.zeros_like(t_vec) # for storing the influx to the reservoir\n",
"Q_in_vec[0] = flux_init # storing the initial influx to the reservoir\n",
"# Outflux from reservoir is stored in Q_boundary_res\n",
"level_vec = np.zeros_like(t_vec) # for storing the level in the reservoir at the end of each pipeline timestep\n",
"level_vec[0] = level_init # storing the initial level in the reservoir\n",
"volume_vec = np.zeros_like(t_vec) # for storing the volume in the reservoir at the end of each pipeline timestep\n",
"volume_vec[0] = reservoir.get_current_volume() # storing the initial volume in the reservoir\n",
"\n",
"# pipeline\n",
"v_old = pipe.get_current_velocity_distribution() # for storing the velocity from the last timestep\n",
"v_min = pipe.get_lowest_velocity_per_node() # for storing minimal flux velocity at each node\n",
"v_max = pipe.get_highest_velocity_per_node() # for storing maximal flux velocity at each node\n",
"Q_old = pipe.get_current_flux_distribution() # for storing the flux from the last timestep\n",
"Q_min = pipe.get_lowest_flux_per_node() # for storing minimal flux at each node\n",
"Q_max = pipe.get_highest_flux_per_node() # for storing maximal flux at each node\n",
"p_old = pipe.get_current_pressure_distribution() # for storing the pressure from the last timestep\n",
"p_min = pipe.get_lowest_pressure_per_node() # for storing minimal pressure at each node\n",
"p_max = pipe.get_highest_pressure_per_node() # for storing maximal pressure at each node\n",
"p_0 = pipe.get_initial_pressure_distribution() # storing initial pressure at each node\n",
"\n",
"v_boundary_res = np.zeros_like(t_vec) # for storing the boundary velocity at the reservoir\n",
"v_boundary_tur = np.zeros_like(t_vec) # for storing the boundary velocity at the turbine\n",
"Q_boundary_res = np.zeros_like(t_vec) # for storing the boundary flux at the reservoir\n",
"Q_boundary_tur = np.zeros_like(t_vec) # for storing the boundary flux at the turbine\n",
"p_boundary_res = np.zeros_like(t_vec) # for storing the boundary pressure at the reservoir\n",
"p_boundary_tur = np.zeros_like(t_vec) # for storing the boundary pressure at the turbine\n",
"\n",
"v_boundary_res[0] = v_old[0] # storing the initial value for the boundary velocity at the reservoir\n",
"v_boundary_tur[0] = v_old[-1] # storing the initial value for the boundary velocity at the turbine\n",
"Q_boundary_res[0] = Q_old[0] # storing the initial value for the boundary flux at the reservoir\n",
"Q_boundary_tur[0] = Q_old[-1] # storing the initial value for the boundary flux at the turbine\n",
"p_boundary_res[0] = p_old[0] # storing the initial value for the boundary pressure at the reservoir\n",
"p_boundary_tur[0] = p_old[-1] # storing the initial value for the boundary pressure at the turbine\n",
"\n",
"# OL KW\n",
"OL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T1_LA_ist_vec[0] = OL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"OL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"OL_T2_LA_ist_vec[0] = OL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"# UL KW\n",
"UL_T1_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T1_LA_soll_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_soll_vec = np.zeros_like(t_vec) # for storing the target value of the guide vane opening\n",
"UL_T2_LA_soll_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T1_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T1_LA_ist_vec[0] = UL_T1.get_current_LA() # storing the initial value of the guide vane opening\n",
"\n",
"UL_T2_LA_ist_vec = np.zeros_like(t_vec) # for storing the actual value of the guide vane opening\n",
"UL_T2_LA_ist_vec[0] = UL_T2.get_current_LA() # storing the initial value of the guide vane opening\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"# code cell 6\n",
"# displaying the guide vane openings\n",
"# for plot in separate window\n",
"%matplotlib qt5 \n",
"\n",
"fig0,axs0 = plt.subplots(1,1)\n",
"axs0.set_title('LA')\n",
"axs0.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs0.scatter(t_vec[::200],100*OL_T1_LA_soll_vec[::200],c='b',marker='+') # plot only every 200th value\n",
"axs0.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs0.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs0.scatter(t_vec[::200],100*UL_T1_LA_soll_vec[::200],c='r',marker='+')\n",
"# axs0.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs0.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs0.set_ylabel(r'$LA$ [%]')\n",
"axs0.legend()\n",
"plt.pause(2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# code cell 7\n",
"# create the figure in which the evolution of the pipeline will be displayed\n",
"%matplotlib qt5\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"fig1.suptitle(str(0) +' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
"axs1[0].set_title('Pressure distribution in pipeline')\n",
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[0].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[0].set_ylim([-2,80])\n",
"axs1[1].set_title('Pressure distribution in pipeline \\n Difference to t=0')\n",
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs1[1].set_ylim([-40,20])\n",
"axs1[2].set_title('Flux distribution in pipeline')\n",
"axs1[2].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs1[2].set_ylabel(r'$Q$ [$\\mathrm{m}^3 / \\mathrm{s}$]')\n",
"axs1[2].set_ylim([-1,10])\n",
"# create line objects (lo) whoes values can be updated in time loop to animate the evolution\n",
"lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(p_old,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
"lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(p_old-p_0,pUnit_calc, pUnit_conv),marker='.')\n",
"lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
"lo_2, = axs1[1].plot(Pip_x_vec,Q_old,marker='.')\n",
"lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"\n",
"# axs1[0].autoscale()\n",
"# axs1[1].autoscale()\n",
"\n",
"fig1.tight_layout()\n",
"fig1.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- in line 10 OL_p_pseudo is used"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"# code cell 8\n",
"# time loop\n",
"# needed for turbine convergence\n",
"convergence_parameters = [p_old[-2],v_old[-2],Pip_dia,Pip_area,Pip_angle,Pip_f_D,Pip_pw_vel,rho,Pip_dt,p_old[-1]]\n",
"\n",
"# loop through time steps of the pipeline\n",
"for it_pipe in range(1,nt+1):\n",
"\n",
" # update OL_KW and the influx into the reservoir\n",
" KW_OL.update_LAs([OL_T1_LA_soll_vec[it_pipe],OL_T2_LA_soll_vec[it_pipe]])\n",
" KW_OL.set_pressure(OL_p_pseudo)\n",
" Q_in_vec[it_pipe] = KW_OL.get_current_Q()\n",
" reservoir.set_influx(Q_in_vec[it_pipe])\n",
"\n",
"# for each pipeline timestep, execute Res_nt timesteps of the reservoir code\n",
" # set initial condition for the reservoir time evolution calculted with the timestep_reservoir_evolution() method\n",
" reservoir.set_pressure(p_old[0],display_warning=False)\n",
" reservoir.set_outflux(Q_old[0],display_warning=False)\n",
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
" for it_res in range(Res_nt):\n",
" reservoir.timestep_reservoir_evolution() \n",
" # save the level and the volume in the reservoir \n",
" level_vec[it_pipe] = reservoir.get_current_level() \n",
" volume_vec[it_pipe] = reservoir.get_current_volume() \n",
"\n",
" # update target value for UL_KW from the level controller\n",
" level_control.update_control_variable(level_vec[it_pipe])\n",
" UL_T1_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" UL_T2_LA_soll_vec[it_pipe] = level_control.get_current_control_variable() \n",
" \n",
" # change the guide vane opening based on the target value and closing time limitation\n",
" KW_UL.update_LAs([UL_T1_LA_soll_vec[it_pipe],UL_T2_LA_soll_vec[it_pipe]])\n",
" # save the actual guide vane openings\n",
" OL_T1_LA_ist_vec[it_pipe], OL_T2_LA_ist_vec[it_pipe] = KW_OL.get_current_LAs()\n",
" UL_T1_LA_ist_vec[it_pipe], UL_T2_LA_ist_vec[it_pipe] = KW_UL.get_current_LAs()\n",
"\n",
" # set boundary condition for the next timestep of the characteristic method\n",
" convergence_parameters[0] = p_old[-2]\n",
" convergence_parameters[1] = v_old[-2]\n",
" convergence_parameters[9] = p_old[-1]\n",
" KW_UL.set_pressure(p_old[-1])\n",
" # use the convergence method to avoid numerical errors\n",
" KW_UL.converge(convergence_parameters)\n",
" # save the first set of boundary conditions\n",
" p_boundary_res[it_pipe] = reservoir.get_current_pressure()\n",
" v_boundary_tur[it_pipe] = 1/Pip_area*KW_UL.get_current_Q()\n",
" Q_boundary_tur[it_pipe] = KW_UL.get_current_Q()\n",
"\n",
" # set the the boundary condition in the pipe and thereby calculate boundary pressure at turbine\n",
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
" # save the second set of boundary conditions\n",
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
" Q_boundary_res[it_pipe] = pipe.get_current_flux_distribution()[0]\n",
"\n",
" # perform the next timestep via the characteristic method\n",
" # use vectorized method for performance\n",
" pipe.timestep_characteristic_method_vectorized()\n",
"\n",
" # prepare for next loop\n",
" p_old = pipe.get_current_pressure_distribution()\n",
" v_old = pipe.get_current_velocity_distribution()\n",
" Q_old = pipe.get_current_flux_distribution()\n",
"\n",
" # plot some stuff\n",
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
" if it_pipe%50 == 0: # only plot every 50th iteration for performance reasons (plotting takes the most amount of time)\n",
" lo_0.remove()\n",
" lo_0min.remove()\n",
" lo_0max.remove()\n",
" lo_1.remove()\n",
" lo_1min.remove()\n",
" lo_1max.remove()\n",
" lo_2.remove()\n",
" lo_2min.remove()\n",
" lo_2max.remove()\n",
" # plot new pressure and velocity distribution in the pipeline\n",
" lo_0, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution(),pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_0min, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red')\n",
" lo_0max, = axs1[0].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node(),pUnit_calc,pUnit_conv),c='red') \n",
" lo_1, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_current_pressure_distribution()-p_0,pUnit_calc,pUnit_conv),marker='.',c='blue')\n",
" lo_1min, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_lowest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_1max, = axs1[1].plot(Pip_x_vec,pressure_conversion(pipe.get_highest_pressure_per_node()-p_0,pUnit_calc,pUnit_conv),c='red')\n",
" lo_2, = axs1[2].plot(Pip_x_vec,pipe.get_current_flux_distribution(),marker='.',c='blue')\n",
" lo_2min, = axs1[2].plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
" lo_2max, = axs1[2].plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
" fig1.suptitle(str(round(t_vec[it_pipe],2))+ ' s / '+str(round(t_vec[-1],2)) + ' s' )\n",
" fig1.canvas.draw() # force figure output\n",
" fig1.tight_layout()\n",
" fig1.show()\n",
" plt.pause(0.1) "
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# code cell 9\n",
"# plot some stuff in separate windows\n",
"\n",
"level_plot_min = 0\n",
"level_plot_max = 3\n",
"volume_plot_min = level_plot_min*Res_area_base\n",
"volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Level and Volume reservoir')\n",
"axs2.plot(t_vec,level_vec,label='level')\n",
"axs2.plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$h$ [m]')\n",
"axs2.set_ylim(level_plot_min,level_plot_max)\n",
"x_twin_00 = axs2.twinx()\n",
"x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"x_twin_00.plot(t_vec,volume_vec)\n",
"x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('LA')\n",
"axs2.plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"axs2.scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"axs2.plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"axs2.scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"axs2.plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"axs2.scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"axs2.plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"axs2.scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$LA$ [%]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"axs2.plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Fluxes')\n",
"axs2.plot(t_vec,Q_in_vec,label='Influx')\n",
"axs2.plot(t_vec,Q_boundary_res,label='Outflux')\n",
"axs2.scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"axs2.set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"axs2.legend()\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Pressure')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_pressure_per_node(disp_flag=True),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"\n",
"fig2,axs2 = plt.subplots(1,1)\n",
"axs2.set_title('Min and Max Fluxes')\n",
"axs2.plot(Pip_x_vec,pipe.get_lowest_flux_per_node(),c='red')\n",
"axs2.plot(Pip_x_vec,pipe.get_highest_flux_per_node(),c='red')\n",
"axs2.set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
"axs2.set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"\n",
"fig2.tight_layout()\n",
"plt.show()\n",
"# plt.close()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Adaptions to fit specific project \n",
"- change level_plot_min and _max\n",
"- check that folder for saving figures is present in same directory as this file\n",
"- change name of the saved file in line 54: Vorlage -> ..."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# # code cell 10\n",
"# # code for plotting and safing the figures generated in the loop\n",
"\n",
"# level_plot_min = 0\n",
"# level_plot_max = 3\n",
"# volume_plot_min = level_plot_min*Res_area_base\n",
"# volume_plot_max = level_plot_max*Res_area_base\n",
"\n",
"# fig3,axs3 = plt.subplots(2,2,figsize=(16,9))\n",
"# fig3.suptitle('Fläche = '+str(Res_area_base)+'\\n'+'Kp = '+str(Con_K_p)+' Ti = '+str(Con_T_i))\n",
"# axs3[0,0].set_title('Level and Volume reservoir')\n",
"# axs3[0,0].plot(t_vec,level_vec,label='level')\n",
"# axs3[0,0].plot(t_vec,np.full_like(t_vec,Res_level_crit_lo),label='level_limit',c='r')\n",
"# axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,0].set_ylabel(r'$h$ [m]')\n",
"# axs3[0,0].set_ylim(level_plot_min,level_plot_max)\n",
"# x_twin_00 = axs3[0,0].twinx()\n",
"# x_twin_00.set_ylabel(r'$V$ [$\\mathrm{m}^3$]')\n",
"# x_twin_00.plot(t_vec,volume_vec)\n",
"# x_twin_00.set_ylim(volume_plot_min,volume_plot_max)\n",
"# axs3[0,0].legend()\n",
"\n",
"# axs3[0,1].set_title('LA')\n",
"# axs3[0,1].plot(t_vec,100*OL_T1_LA_soll_vec,label='OL_T1 Target',c='b')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T1_LA_ist_vec[::200],label='OL_T1 Actual',c='b',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*OL_T2_LA_soll_vec,label='OL_T2 Target',c='g')\n",
"# axs3[0,1].scatter(t_vec[::200],100*OL_T2_LA_ist_vec[::200],label='OL_T2 Actual',c='g',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T1_LA_soll_vec,label='UL_T1 Target',c='r')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T1_LA_ist_vec[::200],label='UL_T1 Actual',c='r',marker='+')\n",
"# axs3[0,1].plot(t_vec,100*UL_T2_LA_soll_vec,label='UL_T2 Target',c='k')\n",
"# axs3[0,1].scatter(t_vec[::200],100*UL_T2_LA_ist_vec[::200],label='UL_T2 Actual',c='k',marker='+')\n",
"# axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[0,1].set_ylabel(r'$LA$ [%]')\n",
"# axs3[0,1].legend()\n",
"\n",
"# axs3[1,0].set_title('Fluxes')\n",
"# axs3[1,0].plot(t_vec,Q_in_vec,label='Influx')\n",
"# axs3[1,0].plot(t_vec,Q_boundary_res,label='Outflux')\n",
"# axs3[1,0].scatter(t_vec[::200],Q_boundary_tur[::200],label='Flux Turbine',c='g',marker='+')\n",
"# axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,0].set_ylabel(r'$Q$ [$\\mathrm{m}^3/\\mathrm{s}$]')\n",
"# axs3[1,0].legend()\n",
"\n",
"# axs3[1,1].set_title('Pressure change vs t=0 at reservoir and turbine')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_res-p_boundary_res[0],pUnit_calc, pUnit_conv),label='Reservoir')\n",
"# axs3[1,1].plot(t_vec,pressure_conversion(p_boundary_tur-p_boundary_tur[0],pUnit_calc, pUnit_conv),label='Turbine')\n",
"# axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"# axs3[1,1].set_ylabel(r'$p$ ['+pUnit_conv+']')\n",
"# axs3[1,1].legend()\n",
"\n",
"# fig3.tight_layout()\n",
"# plt.show()\n",
"\n",
"# figname = 'Simulation Vorlage\\KW_Vorlage_Fläche_'+str(Res_area_base)+'_Kp_'+str(round(Con_K_p,1))+'_Ti_'+str(Con_T_i)+'.png'\n",
"# fig3.savefig(figname)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}