212 lines
9.4 KiB
Python
212 lines
9.4 KiB
Python
from logging import exception
|
|
import numpy as np
|
|
|
|
#importing pressure conversion function
|
|
import sys
|
|
import os
|
|
current = os.path.dirname(os.path.realpath(__file__))
|
|
parent = os.path.dirname(current)
|
|
sys.path.append(parent)
|
|
from functions.pressure_conversion import pressure_conversion
|
|
|
|
def FODE_function(x,h,A,A_a,p,rho,g):
|
|
# (FODE ... first order differential equation)
|
|
# based on the outflux formula by Andreas Malcherek
|
|
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
|
|
# adapted for a pressurized pipeline into which the reservoir effuses
|
|
# and flow direction
|
|
# x ... effusion velocity
|
|
# h ... level in the reservoir
|
|
# A_a ... Outflux_Area
|
|
# A ... Reservoir_Area
|
|
# g ... gravitational acceleration
|
|
# rho ... density of the liquid in the reservoir
|
|
f = x*abs(x)/h*(A_a/A-1.5)+g-p/(rho*h)
|
|
return f
|
|
|
|
|
|
class Ausgleichsbecken_class:
|
|
# units
|
|
# make sure that units and print units are the same
|
|
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
|
|
area_unit = r'$\mathrm{m}^2$'
|
|
area_outflux_unit = r'$\mathrm{m}^2$'
|
|
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
|
|
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
|
|
level_unit = 'm'
|
|
pressure_unit = 'Pa'
|
|
time_unit = 's'
|
|
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
|
|
volume_unit = r'$\mathrm{m}^3$'
|
|
|
|
area_unit_print = 'm²'
|
|
area_outflux_unit_print = 'm²'
|
|
density_unit_print = 'kg/m³'
|
|
flux_unit_print = 'm³/s'
|
|
level_unit_print = 'm'
|
|
pressure_unit_print = '--' # will be set by .set_pressure() method
|
|
time_unit_print = 's'
|
|
velocity_unit_print = 'm/s'
|
|
volume_unit_print = 'm³'
|
|
|
|
g = 9.81 # m/s² gravitational acceleration
|
|
|
|
|
|
# init
|
|
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1,rho = 1000):
|
|
self.area = area # base area of the rectangular structure
|
|
self.area_outflux = outflux_area # area of the outlet towards the pipeline
|
|
self.density = rho # density of the liquid in the system
|
|
self.level_min = level_min # lowest allowed water level
|
|
self.level_max = level_max # highest allowed water level
|
|
self.timestep = timestep # timestep of the simulation
|
|
|
|
# initialize for get_info
|
|
self.influx = "--"
|
|
self.level = "--"
|
|
self.outflux = "--"
|
|
self.volume = "--"
|
|
|
|
|
|
# setter
|
|
def set_initial_level(self,initial_level):
|
|
# sets the level in the reservoir and should only be called during initialization
|
|
if self.level == '--':
|
|
self.level = initial_level
|
|
self.volume = self.update_volume()
|
|
else:
|
|
raise Exception('Initial level was already set once. Use the .update_level(self,timestep) method to update level based on net flux.')
|
|
|
|
def set_influx(self,influx):
|
|
# sets influx to the reservoir in m³/s
|
|
# positive influx means that liquid flows into the reservoir
|
|
self.influx = influx
|
|
|
|
def set_outflux(self,outflux):
|
|
# sets outflux to the reservoir in m³/s
|
|
# positive outflux means that liquid flows out of reservoir the reservoir
|
|
self.outflux = outflux
|
|
|
|
def set_initial_pressure(self,pressure,display_pressure_unit):
|
|
# sets the static pressure present at the outlet of the reservoir
|
|
# units are used to convert and display the pressure
|
|
self.pressure = pressure
|
|
self.pressure_unit_print = display_pressure_unit
|
|
|
|
def set_pressure(self,pressure):
|
|
# sets the static pressure present at the outlet of the reservoir
|
|
# units are used to convert and display the pressure
|
|
self.pressure = pressure
|
|
|
|
def set_steady_state(self,ss_influx,ss_level,display_pressure_unit):
|
|
# set the steady state (ss) condition in which the net flux is zero
|
|
# set pressure acting on the outflux area so that the level stays constant
|
|
ss_outflux = ss_influx
|
|
ss_pressure = self.density*self.g*ss_level-(ss_outflux/self.area_outflux)**2*self.density/2
|
|
|
|
self.set_influx(ss_influx)
|
|
self.set_initial_level(ss_level)
|
|
self.set_initial_pressure(ss_pressure,display_pressure_unit)
|
|
self.set_outflux(ss_outflux)
|
|
|
|
# getter
|
|
def get_info(self, full = False):
|
|
new_line = '\n'
|
|
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_print)
|
|
|
|
|
|
if full == True:
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Base area = {self.area:<10} {self.area_unit_print} {new_line}"
|
|
f"Outflux area = {round(self.area_outflux,3):<10} {self.area_outflux_unit_print} {new_line}"
|
|
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
|
f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}"
|
|
f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}"
|
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
|
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
|
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
|
|
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
|
|
f"----------------------------- {new_line}")
|
|
else:
|
|
# :<10 pads the self.value to be 10 characters wide
|
|
print_str = (f"The current attributes are: {new_line}"
|
|
f"----------------------------- {new_line}"
|
|
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
|
|
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
|
|
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
|
|
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
|
|
f"Current outflux vel = {round(self.outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
|
|
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
|
|
f"----------------------------- {new_line}")
|
|
|
|
print(print_str)
|
|
|
|
def get_current_level(self):
|
|
return self.level
|
|
|
|
def get_current_influx(self):
|
|
return self.influx
|
|
|
|
def get_current_outflux(self):
|
|
return self.outflux
|
|
|
|
def get_current_volume(self):
|
|
return self.volume
|
|
|
|
def get_current_pressure(self):
|
|
return self.pressure
|
|
|
|
|
|
|
|
# methods
|
|
|
|
def update_level(self,timestep):
|
|
# update level based on net flux and timestep by calculating the volume change in
|
|
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
|
|
|
|
# cannot set new level directly in this method, because it gets called to calcuate during the Runge Kutta
|
|
# to calculate a ficticious level at half the timestep
|
|
net_flux = self.influx-self.outflux
|
|
delta_V = net_flux*timestep
|
|
new_level = (self.volume+delta_V)/self.area
|
|
return new_level
|
|
|
|
def update_volume(self):
|
|
# sets volume in reservoir based on self.level
|
|
return self.level*self.area
|
|
|
|
def update_pressure(self):
|
|
p_new = self.density*self.g*self.level-(self.outflux/self.area_outflux)**2*self.density/2
|
|
return p_new
|
|
|
|
def timestep_reservoir_evolution(self):
|
|
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
|
|
dt = self.timestep
|
|
rho = self.density
|
|
g = self.g
|
|
A = self.area
|
|
A_a = self.area_outflux
|
|
yn = self.outflux/A_a # outflux velocity
|
|
h = self.level
|
|
h_hs = self.update_level(dt/2)
|
|
p = self.pressure
|
|
p_hs = self.pressure + rho*g*(h_hs-h)
|
|
# explicit 4 step Runge Kutta
|
|
Y1 = yn
|
|
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
|
|
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
|
|
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
|
|
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
|
|
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
|
|
|
|
self.outflux = ynp1*A_a
|
|
self.level = self.update_level(dt)
|
|
self.volume = self.update_volume()
|
|
self.pressure = self.update_pressure()
|
|
|