246 lines
8.8 KiB
Plaintext
246 lines
8.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from Druckrohrleitung_class_file import Druckrohrleitung_class\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"#importing pressure conversion function\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
|
|
"parent = os.path.dirname(current)\n",
|
|
"sys.path.append(parent)\n",
|
|
"from functions.pressure_conversion import pressure_conversion"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib qt5\n",
|
|
"#define constants\n",
|
|
"\n",
|
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
|
"\n",
|
|
"L = 1000 # length of pipeline [m]\n",
|
|
"rho = 1000 # density of water [kg/m³]\n",
|
|
"D = 1 # pipe diameter [m]\n",
|
|
"Q0 = 2 # initial flow in whole pipe [m³/s]\n",
|
|
"h = 20 # water level in upstream reservoir [m]\n",
|
|
"n = 10 # number of pipe segments in discretization\n",
|
|
"nt = 500 # number of time steps after initial conditions\n",
|
|
"f_D = 0.01 # Darcy friction factor\n",
|
|
"c = 400 # propagation velocity of the pressure wave [m/s]\n",
|
|
"\n",
|
|
"\n",
|
|
"# preparing the discretization and initial conditions\n",
|
|
"\n",
|
|
"dx = L/n # length of each pipe segment\n",
|
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
|
"nn = n+1 # number of nodes\n",
|
|
"pl_vec = np.arange(0,nn*dx,dx) # pl = pipe-length. position of the nodes on the pipeline\n",
|
|
"t_vec = np.arange(0,nt*dt,dt) # time vector\n",
|
|
"\n",
|
|
"v0 = Q0/(D**2/4*np.pi)\n",
|
|
"p0 = (rho*g*h-v0**2*rho/2)\n",
|
|
"\n",
|
|
"# storage vectors for old parameters\n",
|
|
"v_old = np.full(nn,v0)\n",
|
|
"p_old = p0-(f_D*pl_vec/D*rho/2*v0**2) # ref Wikipedia: Darcy Weisbach\n",
|
|
"\n",
|
|
"# storage vectors for new parameters\n",
|
|
"v_new = np.zeros_like(v_old)\n",
|
|
"p_new = np.zeros_like(p_old)\n",
|
|
"\n",
|
|
"# storage vector for time evolution of parameters at node 1 (at reservoir)\n",
|
|
"p_1 = np.full_like(t_vec,p0)\n",
|
|
"v_1 = np.full_like(t_vec,v0)\n",
|
|
"\n",
|
|
"# storage vector for time evolution of parameters at node N+1 (at valve)\n",
|
|
"p_np1 = np.full_like(t_vec,p0)\n",
|
|
"v_np1 = np.full_like(t_vec,v0)\n",
|
|
"\n",
|
|
"for it in range(1,nt):\n",
|
|
"\n",
|
|
" # set boundary conditions\n",
|
|
" v_new[-1] = 0 # in front of the instantaneously closing valve, the velocity is 0\n",
|
|
" p_new[0] = p0 # hydrostatic pressure from the reservoir\n",
|
|
"\n",
|
|
" # calculate the new parameters at first and last node\n",
|
|
" v_new[0] = v_old[1]+1/(rho*c)*(p0-p_old[1])-f_D*dt/(2*D)*abs(v_old[1])*v_old[1]\n",
|
|
" p_new[-1] = p_old[-2]+rho*c*v_old[-2]-rho*c*f_D*dt/(2*D) *abs(v_old[-2])*v_old[-2]\n",
|
|
"\n",
|
|
" # calculate parameters at second to second-to-last nodes \n",
|
|
" #equation 2-30 plus 2-31 (and refactor for v_i^j+1) in block 2\n",
|
|
"\n",
|
|
" for i in range(1,nn-1):\n",
|
|
" v_new[i] = 0.5*(v_old[i-1]+v_old[i+1])+0.5/(rho*c)*(p_old[i-1]-p_old[i+1]) \\\n",
|
|
" -f_D*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]+abs(v_old[i+1])*v_old[i+1])\n",
|
|
"\n",
|
|
" p_new[i] = 0.5*rho*c*(v_old[i-1]-v_old[i+1])+0.5*(p_old[i-1]+p_old[i+1]) \\\n",
|
|
" -rho*c*f_D*dt/(4*D)*(abs(v_old[i-1])*v_old[i-1]-abs(v_old[i+1])*v_old[i+1])\n",
|
|
" \n",
|
|
"\n",
|
|
" # prepare for next loop\n",
|
|
" # use .copy() to avoid that memory address is overwritten and hell breaks loose :D\n",
|
|
" #https://www.geeksforgeeks.org/array-copying-in-python/\n",
|
|
" p_old = p_new.copy()\n",
|
|
" v_old = v_new.copy()\n",
|
|
"\n",
|
|
" # store parameters of node 1 (at reservoir)\n",
|
|
" p_1[it] = p_new[0]\n",
|
|
" v_1[it] = v_new[0]\n",
|
|
" # store parameters of node N+1 (at reservoir)\n",
|
|
" p_np1[it] = p_new[-1]\n",
|
|
" v_np1[it] = v_new[-1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig1,axs1 = plt.subplots(2,2)\n",
|
|
"axs1[0,0].plot(t_vec,p_1)\n",
|
|
"axs1[0,1].plot(t_vec,v_1)\n",
|
|
"axs1[1,0].plot(t_vec,p_np1)\n",
|
|
"axs1[1,1].plot(t_vec,v_np1)\n",
|
|
"axs1[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs1[0,0].set_ylabel(r'$p$ [Pa]')\n",
|
|
"axs1[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs1[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"axs1[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs1[1,0].set_ylabel(r'$p$ [Pa]')\n",
|
|
"axs1[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs1[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"\n",
|
|
"axs1[0,0].set_title('Pressure Reservoir')\n",
|
|
"axs1[0,1].set_title('Velocity Reservoir')\n",
|
|
"axs1[1,0].set_title('Pressure Turbine')\n",
|
|
"axs1[1,1].set_title('Velocity Turbine')\n",
|
|
"fig1.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pipe = Druckrohrleitung_class(L,D,n,0,f_D)\n",
|
|
"\n",
|
|
"pipe.set_pressure_propagation_velocity(c)\n",
|
|
"pipe.set_number_of_timesteps(nt)\n",
|
|
"\n",
|
|
"pipe.set_initial_pressure(p0)\n",
|
|
"pipe.set_initial_flow_velocity(v0)\n",
|
|
"pipe.set_boundary_conditions_next_timestep(v_1[0],p_1[0],v_np1[0])\n",
|
|
"\n",
|
|
"# storage vector for time evolution of parameters at node 1 (at reservoir)\n",
|
|
"pipe.p_1 = np.full_like(t_vec,p0)\n",
|
|
"pipe.v_1 = np.full_like(t_vec,v0)\n",
|
|
"\n",
|
|
"# storage vector for time evolution of parameters at node N+1 (at valve)\n",
|
|
"pipe.p_np1 = np.full_like(t_vec,p0)\n",
|
|
"pipe.v_np1 = np.full_like(t_vec,v0)\n",
|
|
"\n",
|
|
"fig2,axs2 = plt.subplots(2,1)\n",
|
|
"axs2[0].set_title('Pressure distribution in pipeline')\n",
|
|
"axs2[1].set_title('Velocity distribution in pipeline')\n",
|
|
"axs2[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs2[0].set_ylabel(r'$p$ [Pa]')\n",
|
|
"axs2[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs2[1].set_ylabel(r'$p$ [Pa]')\n",
|
|
"lo_00, = axs2[0].plot(pl_vec,pipe.p_old,marker='.')\n",
|
|
"lo_01, = axs2[1].plot(pl_vec,pipe.v_old,marker='.')\n",
|
|
"axs2[0].set_ylim([-20*p0,20*p0])\n",
|
|
"axs2[1].set_ylim([-2*v0,2*v0])\n",
|
|
"fig2.tight_layout()\n",
|
|
"\n",
|
|
"\n",
|
|
"for it in range(1,pipe.nt):\n",
|
|
" pipe.set_boundary_conditions_next_timestep(v_1[it],p_1[it],v_np1[it])\n",
|
|
" pipe.timestep_characteristic_method()\n",
|
|
" lo_00.set_ydata(pipe.p)\n",
|
|
" lo_01.set_ydata(pipe.v)\n",
|
|
"\n",
|
|
" # store parameters of node 1 (at reservoir)\n",
|
|
" pipe.p_1[it] = pipe.p[0]\n",
|
|
" pipe.v_1[it] = pipe.v[0]\n",
|
|
" # store parameters of node N+1 (at reservoir)\n",
|
|
" pipe.p_np1[it] = pipe.p[-1]\n",
|
|
" pipe.v_np1[it] = pipe.v[-1]\n",
|
|
" \n",
|
|
" fig2.suptitle(str(it))\n",
|
|
" fig2.canvas.draw()\n",
|
|
" fig2.tight_layout()\n",
|
|
" plt.pause(0.001)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig3,axs3 = plt.subplots(2,2)\n",
|
|
"axs3[0,0].plot(t_vec,pipe.p_1)\n",
|
|
"axs3[0,1].plot(t_vec,pipe.v_1)\n",
|
|
"axs3[1,0].plot(t_vec,pipe.p_np1)\n",
|
|
"axs3[1,1].plot(t_vec,pipe.v_np1)\n",
|
|
"axs3[0,0].set_title('Pressure Reservoir')\n",
|
|
"axs3[0,1].set_title('Velocity Reservoir')\n",
|
|
"axs3[1,0].set_title('Pressure Turbine')\n",
|
|
"axs3[1,1].set_title('Velocity Turbine')\n",
|
|
"axs3[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs3[0,0].set_ylabel(r'$p$ [Pa]')\n",
|
|
"axs3[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs3[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"axs3[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs3[1,0].set_ylabel(r'$p$ [Pa]')\n",
|
|
"axs3[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs3[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"fig3.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.8.13 ('DT_Slot_3')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "4a28055eb8a3160fa4c7e4fca69770c4e0a1add985300856aa3fcf4ce32a2c48"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|