313 lines
13 KiB
Plaintext
313 lines
13 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from convergence_turbine import Francis_Turbine_test\n",
|
|
"\n",
|
|
"#importing pressure conversion function\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
|
|
"parent = os.path.dirname(current)\n",
|
|
"sys.path.append(parent)\n",
|
|
"from functions.pressure_conversion import pressure_conversion\n",
|
|
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
|
"from Druckrohrleitung.Druckrohrleitung_class_file import Druckrohrleitung_class\n",
|
|
"from Regler.Regler_class_file import PI_controller_class"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib qt5\n",
|
|
"\n",
|
|
"#Turbine\n",
|
|
"Q_nenn = 0.85 # m³/s\n",
|
|
"p_nenn = pressure_conversion(10.6,'bar','Pa')\n",
|
|
"closing_time = 90. #s\n",
|
|
"\n",
|
|
"#define constants pipe\n",
|
|
"\n",
|
|
"g = 9.81 # gravitational acceleration [m/s²]\n",
|
|
"rho = 1000. # density of water [kg/m³]\n",
|
|
"\n",
|
|
"# define controller constants\n",
|
|
"target_level = 8. # m\n",
|
|
"Kp = 0.1\n",
|
|
"Ti = 1000.\n",
|
|
"deadband_range = 0.05 # m\n",
|
|
"\n",
|
|
"L = 535.+478. # length of pipeline [m]\n",
|
|
"D = 0.9 # pipe diameter [m]\n",
|
|
"h_res = target_level # water level in upstream reservoir [m]\n",
|
|
"n = 50 # number of pipe segments in discretization\n",
|
|
"nt = 10000 # number of time steps after initial conditions\n",
|
|
"f_D = 0.014 # Darcy friction factor\n",
|
|
"c = 400. # propagation velocity of the pressure wave [m/s]\n",
|
|
"h_pipe = 105. # hydraulic head without reservoir [m] \n",
|
|
"alpha = np.arcsin(h_pipe/L) # Höhenwinkel der Druckrohrleitung \n",
|
|
"\n",
|
|
"# define constants reservoir\n",
|
|
"conversion_pressure_unit = 'mWS'\n",
|
|
"\n",
|
|
"# preparing the discretization and initial conditions\n",
|
|
"initial_flux = Q_nenn/1.1 # m³/s\n",
|
|
"initial_level = h_res # m\n",
|
|
"dx = L/n # length of each pipe segment\n",
|
|
"dt = dx/c # timestep according to method of characterisitics\n",
|
|
"nn = n+1 # number of nodes\n",
|
|
"pl_vec = np.arange(0,nn,1)*dx # pl = pipe-length. position of the nodes on the pipeline\n",
|
|
"t_vec = np.arange(0,nt,1)*dt # time vector\n",
|
|
"h_vec = np.arange(0,nn,1)*h_pipe/n # hydraulic head of pipeline at each node\n",
|
|
"\n",
|
|
"\n",
|
|
"# define constants reservoir\n",
|
|
"conversion_pressure_unit = 'mWS'\n",
|
|
"\n",
|
|
"area_base = 75. # m²\n",
|
|
"area_pipe = (D/2)**2*np.pi # m²\n",
|
|
"critical_level_low = 0. # m\n",
|
|
"critical_level_high = 100. # m\n",
|
|
"\n",
|
|
"# make sure e-RK4 method of reservoir has a small enough timestep to avoid runaway numerical error\n",
|
|
"nt_eRK4 = 100 # number of simulation steps of reservoir in between timesteps of pipeline \n",
|
|
"simulation_timestep = dt/nt_eRK4"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"V = Ausgleichsbecken_class(area_base,area_pipe,critical_level_low,critical_level_high,simulation_timestep)\n",
|
|
"V.set_steady_state(initial_flux,initial_level,conversion_pressure_unit)\n",
|
|
"\n",
|
|
"pipe = Druckrohrleitung_class(L,D,n,alpha,f_D)\n",
|
|
"pipe.set_pressure_propagation_velocity(c)\n",
|
|
"pipe.set_number_of_timesteps(nt)\n",
|
|
"pipe.set_steady_state(initial_flux,initial_level,area_base,pl_vec,h_vec)\n",
|
|
"\n",
|
|
"\n",
|
|
"initial_pressure_turbine = pipe.get_current_pressure_distribution()[-1]\n",
|
|
"T1 = Francis_Turbine_test(Q_nenn,p_nenn,closing_time,timestep=dt)\n",
|
|
"T1.set_steady_state(initial_flux,initial_pressure_turbine)\n",
|
|
"\n",
|
|
"T_in = Francis_Turbine_test(Q_nenn,p_nenn,closing_time/2,timestep=dt)\n",
|
|
"T_in.set_steady_state(initial_flux,p_nenn)\n",
|
|
"\n",
|
|
"Pegelregler = PI_controller_class(target_level,deadband_range,Kp,Ti,dt)\n",
|
|
"Pegelregler.control_variable = T1.get_current_LA()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# initialization for timeloop\n",
|
|
"\n",
|
|
"level_vec = np.zeros_like(t_vec)\n",
|
|
"level_vec[0] = V.get_current_level()\n",
|
|
"\n",
|
|
"# prepare the vectors in which the pressure and velocity distribution in the pipeline from the previous timestep are stored\n",
|
|
"v_old = pipe.get_current_velocity_distribution()\n",
|
|
"p_old = pipe.get_current_pressure_distribution()\n",
|
|
"\n",
|
|
"# prepare the vectors in which the temporal evolution of the boundary conditions are stored\n",
|
|
" # keep in mind, that the velocity at the turbine and the pressure at the reservoir are set manually and\n",
|
|
" # through the time evolution of the reservoir respectively \n",
|
|
" # the pressure at the turbine and the velocity at the reservoir are calculated from the method of characteristics\n",
|
|
"v_boundary_res = np.zeros_like(t_vec)\n",
|
|
"v_boundary_tur = np.zeros_like(t_vec)\n",
|
|
"p_boundary_res = np.zeros_like(t_vec)\n",
|
|
"p_boundary_tur = np.zeros_like(t_vec)\n",
|
|
"\n",
|
|
"# set the boundary conditions for the first timestep\n",
|
|
"v_boundary_res[0] = v_old[0]\n",
|
|
"v_boundary_tur[0] = v_old[-1] \n",
|
|
"p_boundary_res[0] = p_old[0]\n",
|
|
"p_boundary_tur[0] = p_old[-1]\n",
|
|
"\n",
|
|
"LA_soll_vec = np.full_like(t_vec,T1.get_current_LA())\n",
|
|
"LA_ist_vec = np.full_like(t_vec,T1.get_current_LA())\n",
|
|
"\n",
|
|
"LA_soll_vec2 = np.full_like(t_vec,T_in.get_current_LA())\n",
|
|
"LA_soll_vec2[500:1000] = 0.\n",
|
|
"LA_soll_vec2[1000:1500] = 1. \n",
|
|
"LA_soll_vec2[1500:2000] = 0.\n",
|
|
"LA_soll_vec2[2000:2500] = 0.5 "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig1,axs1 = plt.subplots(2,1)\n",
|
|
"axs1[0].set_title('Pressure distribution in pipeline')\n",
|
|
"axs1[0].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs1[0].set_ylabel(r'$p$ [mWS]')\n",
|
|
"lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa',conversion_pressure_unit),marker='.')\n",
|
|
"\n",
|
|
"axs1[1].set_title('Velocity distribution in pipeline')\n",
|
|
"axs1[1].set_xlabel(r'$x$ [$\\mathrm{m}$]')\n",
|
|
"axs1[1].set_ylabel(r'$v$ [m/s]')\n",
|
|
"lo_01, = axs1[1].plot(pl_vec,v_old,marker='.')\n",
|
|
"\n",
|
|
"axs1[0].autoscale()\n",
|
|
"axs1[1].autoscale()\n",
|
|
"\n",
|
|
"fig1.tight_layout()\n",
|
|
"plt.pause(1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"for it_pipe in range(1,nt):\n",
|
|
"# for each pipeline timestep, execute nt_eRK4 timesteps of the reservoir code\n",
|
|
" \n",
|
|
" T_in.update_LA(LA_soll_vec2[it_pipe])\n",
|
|
" T_in.set_pressure(p_nenn)\n",
|
|
" V.set_influx(T_in.get_current_Q())\n",
|
|
"\n",
|
|
" # set initial conditions for the reservoir time evolution calculted with e-RK4\n",
|
|
" V.set_pressure(p_old[0])\n",
|
|
" V.set_outflux(v_old[0]*area_pipe)\n",
|
|
" # calculate the time evolution of the reservoir level within each pipeline timestep to avoid runaway numerical error\n",
|
|
" for it_res in range(nt_eRK4):\n",
|
|
" V.timestep_reservoir_evolution() \n",
|
|
" level_vec[it_pipe] = V.get_current_level() \n",
|
|
"\n",
|
|
" # get the control variable\n",
|
|
" Pegelregler.update_control_variable(level_vec[it_pipe])\n",
|
|
" LA_soll_vec[it_pipe] = Pegelregler.get_current_control_variable()\n",
|
|
" \n",
|
|
" # change the Leitapparatöffnung based on the target value\n",
|
|
" T1.update_LA(LA_soll_vec[it_pipe])\n",
|
|
" LA_ist_vec[it_pipe] = T1.get_current_LA()\n",
|
|
"\n",
|
|
" # set boundary conditions for the next timestep of the characteristic method\n",
|
|
" T1.set_pressure(p_old[-1])\n",
|
|
" T1.converge(area_pipe,p_old[-2],v_old[-2],alpha,f_D,dt)\n",
|
|
" p_boundary_res[it_pipe] = V.get_current_pressure()\n",
|
|
" v_boundary_tur[it_pipe] = T1.get_current_Q()/area_pipe\n",
|
|
"\n",
|
|
" # the the boundary conditions in the pipe.object and thereby calculate boundary pressure at turbine\n",
|
|
" pipe.set_boundary_conditions_next_timestep(p_boundary_res[it_pipe],v_boundary_tur[it_pipe])\n",
|
|
" pipe.v[0] = (0.8*pipe.v[0]+0.2*V.get_current_outflux()/area_pipe)\n",
|
|
" p_boundary_tur[it_pipe] = pipe.get_current_pressure_distribution()[-1]\n",
|
|
" v_boundary_res[it_pipe] = pipe.get_current_velocity_distribution()[0]\n",
|
|
"\n",
|
|
" # perform the next timestep via the characteristic method\n",
|
|
" pipe.timestep_characteristic_method()\n",
|
|
"\n",
|
|
" # prepare for next loop\n",
|
|
" p_old = pipe.get_current_pressure_distribution()\n",
|
|
" v_old = pipe.get_current_velocity_distribution()\n",
|
|
"\n",
|
|
" # plot some stuff\n",
|
|
" # remove line-objects to autoscale axes (there is definetly a better way, but this works ¯\\_(ツ)_/¯ )\n",
|
|
" lo_00.remove()\n",
|
|
" lo_01.remove()\n",
|
|
" # lo_02.remove()\n",
|
|
" # plot new pressure and velocity distribution in the pipeline\n",
|
|
" lo_00, = axs1[0].plot(pl_vec,pressure_conversion(p_old,'Pa', conversion_pressure_unit),marker='.',c='blue')\n",
|
|
" lo_01, = axs1[1].plot(pl_vec,v_old,marker='.',c='blue')\n",
|
|
" \n",
|
|
" fig1.suptitle(str(round(t_vec[it_pipe],2)) + '/' + str(round(t_vec[-1],2)))\n",
|
|
" fig1.canvas.draw()\n",
|
|
" fig1.tight_layout()\n",
|
|
" plt.pause(0.000001)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plot time evolution of boundary pressure and velocity as well as the reservoir level\n",
|
|
"\n",
|
|
"fig2,axs2 = plt.subplots(3,2)\n",
|
|
"axs2[0,0].set_title('Pressure reservoir')\n",
|
|
"axs2[0,0].plot(t_vec,pressure_conversion(p_boundary_res,'Pa', conversion_pressure_unit))\n",
|
|
"axs2[0,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[0,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
|
"\n",
|
|
"axs2[0,1].set_title('Velocity reservoir')\n",
|
|
"axs2[0,1].plot(t_vec,v_boundary_res)\n",
|
|
"axs2[0,1].set_ylim(-2*Q_nenn,+2*Q_nenn)\n",
|
|
"axs2[0,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[0,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"\n",
|
|
"axs2[1,0].set_title('Pressure turbine')\n",
|
|
"axs2[1,0].plot(t_vec,pressure_conversion(p_boundary_tur,'Pa', conversion_pressure_unit))\n",
|
|
"axs2[1,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[1,0].set_ylabel(r'$p$ ['+conversion_pressure_unit+']')\n",
|
|
"\n",
|
|
"axs2[1,1].set_title('Velocity turbine')\n",
|
|
"axs2[1,1].plot(t_vec,v_boundary_tur)\n",
|
|
"axs2[1,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[1,1].set_ylabel(r'$v$ [$\\mathrm{m}/\\mathrm{s}$]')\n",
|
|
"\n",
|
|
"axs2[2,0].set_title('Level reservoir')\n",
|
|
"axs2[2,0].plot(t_vec,level_vec)\n",
|
|
"axs2[2,0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[2,0].set_ylabel(r'$h$ [m]')\n",
|
|
"\n",
|
|
"axs2[2,1].set_title('LA')\n",
|
|
"axs2[2,1].plot(t_vec,100*LA_soll_vec)\n",
|
|
"axs2[2,1].plot(t_vec,100*LA_ist_vec)\n",
|
|
"axs2[2,1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
|
|
"axs2[2,1].set_ylabel(r'$LA$ [%]')\n",
|
|
"fig2.tight_layout()\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|