due to turbine-pipeline interatction via a convergence method in the turbine and a "damping" trick on the reservoir velocity plus: code cleanup with consistent naming of variables
190 lines
9.0 KiB
Plaintext
190 lines
9.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"from Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"#importing pressure conversion function\n",
|
|
"import sys\n",
|
|
"import os\n",
|
|
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
|
|
"parent = os.path.dirname(current)\n",
|
|
"sys.path.append(parent)\n",
|
|
"from functions.pressure_conversion import pressure_conversion"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# define constants\n",
|
|
"\n",
|
|
" # for physics\n",
|
|
"g = 9.81 # [m/s²] gravitational acceleration \n",
|
|
"rho = 1000. # [kg/m³] density of water \n",
|
|
"pUnit_calc = 'Pa' # [text] DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
|
|
"pUnit_conv = 'mWS' # [text] for pressure conversion in print statements and plot labels\n",
|
|
"\n",
|
|
"\n",
|
|
" # for Turbine\n",
|
|
"Tur_Q_nenn = 0.85 # [m³/s] nominal flux of turbine \n",
|
|
"Tur_p_nenn = pressure_conversion(10.6,'bar',pUnit_calc) # [Pa] nominal pressure of turbine \n",
|
|
"Tur_closingTime = 90. # [s] closing time of turbine\n",
|
|
"\n",
|
|
"\n",
|
|
" # for PI controller\n",
|
|
"Con_targetLevel = 8. # [m]\n",
|
|
"Con_K_p = 0.1 # [-] proportional constant of PI controller\n",
|
|
"Con_T_i = 10. # [s] timespan in which a steady state error is corrected by the intergal term\n",
|
|
"Con_deadbandRange = 0.05 # [m] Deadband range around targetLevel for which the controller does NOT intervene\n",
|
|
"\n",
|
|
"\n",
|
|
" # for pipeline\n",
|
|
"Pip_length = (535.+478.) # [m] length of pipeline\n",
|
|
"Pip_dia = 0.9 # [m] diameter of pipeline\n",
|
|
"Pip_area = Pip_dia**2/4*np.pi # [m²] crossectional area of pipeline\n",
|
|
"Pip_head = 105. # [m] hydraulic head of pipeline without reservoir\n",
|
|
"Pip_angle = np.arcsin(Pip_head/Pip_length) # [rad] elevation angle of pipeline \n",
|
|
"Pip_n_seg = 50 # [-] number of pipe segments in discretization\n",
|
|
"Pip_f_D = 0.014 # [-] Darcy friction factor\n",
|
|
"Pip_pw_vel = 500. # [m/s] propagation velocity of the pressure wave (pw) in the given pipeline\n",
|
|
" # derivatives of the pipeline constants\n",
|
|
"Pip_dx = Pip_length/Pip_n_seg # [m] length of each pipe segment\n",
|
|
"Pip_dt = Pip_dx/Pip_pw_vel # [s] timestep according to method of characteristics\n",
|
|
"Pip_nn = Pip_n_seg+1 # [1] number of nodes\n",
|
|
"Pip_x_vec = np.arange(0,Pip_nn,1)*Pip_dx # [m] vector holding the distance of each node from the upstream reservoir along the pipeline\n",
|
|
"Pip_h_vec = np.arange(0,Pip_nn,1)*Pip_head/Pip_n_seg # [m] vector holding the vertival distance of each node from the upstream reservoir\n",
|
|
"\n",
|
|
"\n",
|
|
" # for reservoir\n",
|
|
"Res_area_base = 5. # [m²] total base are of the cuboid reservoir \n",
|
|
"Res_area_out = Pip_area # [m²] outflux area of the reservoir, given by pipeline area\n",
|
|
"Res_level_crit_lo = 0. # [m] for yet-to-be-implemented warnings\n",
|
|
"Res_level_crit_hi = np.inf # [m] for yet-to-be-implemented warnings\n",
|
|
"Res_dt_approx = 1e-3 # [s] approx. timestep of reservoir time evolution to ensure numerical stability (see Res_nt why approx.)\n",
|
|
"Res_nt = max(1,int(Pip_dt//Res_dt_approx)) # [1] number of timesteps of the reservoir time evolution within one timestep of the pipeline\n",
|
|
"Res_dt = Pip_dt/Res_nt # [s] harmonised timestep of reservoir time evolution\n",
|
|
"\n",
|
|
" # for general simulation\n",
|
|
"flux_init = Tur_Q_nenn/1.1 # [m³/s] initial flux through whole system for steady state initialization \n",
|
|
"level_init = Con_targetLevel # [m] initial water level in upstream reservoir for steady state initialization\n",
|
|
"simTime_target = 600. # [s] target for total simulation time (will vary slightly to fit with Pip_dt)\n",
|
|
"nt = int(simTime_target//Pip_dt) # [1] Number of timesteps of the whole system\n",
|
|
"t_vec = np.arange(0,nt+1,1)*Pip_dt # [s] time vector. At each step of t_vec the system parameters are stored\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create objects\n",
|
|
"\n",
|
|
"# Upstream reservoir\n",
|
|
"reservoir = Ausgleichsbecken_class(Res_area_base,Res_area_out,Res_dt,Res_level_crit_lo,Res_level_crit_hi,rho)\n",
|
|
"reservoir.set_steady_state(flux_init,level_init)\n",
|
|
"\n",
|
|
"reservoir.get_info(full=True)\n",
|
|
"\n",
|
|
"# initialize vectors\n",
|
|
"outflux_vec = np.zeros_like(t_vec)\n",
|
|
"outflux_vec[0] = reservoir.get_current_outflux()\n",
|
|
"level_vec = np.zeros_like(t_vec)\n",
|
|
"level_vec[0] = reservoir.get_current_level()\n",
|
|
"volume_vec = np.zeros_like(t_vec)\n",
|
|
"volume_vec[0] = reservoir.get_current_volume()\n",
|
|
"pressure_vec = np.zeros_like(t_vec)\n",
|
|
"pressure_vec[0] = reservoir.get_current_pressure()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# time loop\n",
|
|
"for i in range(1,nt+1):\n",
|
|
" # if i == 500:\n",
|
|
" # reservoir.set_influx(0.)\n",
|
|
" reservoir.set_pressure(pressure_vec[i-1],display_warning=False)\n",
|
|
" reservoir.set_outflux(outflux_vec[i-1],display_warning=False)\n",
|
|
" for it_res in range(Res_nt):\n",
|
|
" reservoir.timestep_reservoir_evolution() \n",
|
|
" \n",
|
|
" outflux_vec[i] = reservoir.get_current_outflux()\n",
|
|
" level_vec[i] = reservoir.get_current_level()\n",
|
|
" pressure_vec[i] = reservoir.get_current_pressure()\n",
|
|
"\n",
|
|
" reservoir.get_info()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib qt5\n",
|
|
"fig1, (ax1, ax2, ax3) = plt.subplots(3, 1)\n",
|
|
"fig1.set_figheight(10)\n",
|
|
"fig1.suptitle('Ausgleichsbecken')\n",
|
|
"\n",
|
|
"ax1.plot(t_vec,level_vec, label='Water level')\n",
|
|
"ax1.set_ylabel(r'$h$ ['+reservoir.level_unit+']')\n",
|
|
"ax1.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n",
|
|
"ax1.legend()\n",
|
|
"\n",
|
|
"ax2.plot(t_vec,outflux_vec, label='Outflux')\n",
|
|
"ax2.set_ylabel(r'$Q_{out}$ ['+reservoir.flux_unit+']')\n",
|
|
"ax2.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n",
|
|
"ax2.legend()\n",
|
|
"\n",
|
|
"ax3.plot(t_vec,pressure_conversion(pressure_vec,'Pa',pUnit_conv), label='Pipeline pressure at reservoir')\n",
|
|
"ax3.set_ylabel(r'$p_{pipeline}$ ['+pUnit_conv+']')\n",
|
|
"ax3.set_xlabel(r'$t$ ['+reservoir.time_unit+']')\n",
|
|
"ax3.legend()\n",
|
|
"\n",
|
|
"\n",
|
|
"fig1.tight_layout() "
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.13"
|
|
},
|
|
"orig_nbformat": 4,
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|