Files
Python-DT_Slot_3/Kraftwerk/Kraftwerk_class_file.py
2022-08-09 13:54:33 +02:00

115 lines
4.7 KiB
Python

import numpy as np
#importing Druckrohrleitung
import sys
import os
current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
from Turbinen.Turbinen_class_file import Francis_Turbine
class Kraftwerk_class:
g = 9.81
def __init__(self):
self.turbines = []
self.n_turbines = 0
# setter
def set_LAs(self,LA_vec,display_warning=True):
for i in range(self.n_turbines):
self.turbines[i].set_LA(LA_vec[i],display_warning)
def set_pressure(self,pressure):
for i in range(self.n_turbines):
self.turbines[i].set_pressure(pressure)
def set_steady_state(self,ss_flux,ss_pressure):
self.identify_Q_proportion()
for i in range(self.n_turbines):
self.turbines[i].set_steady_state(ss_flux*self.Q_prop[i],ss_pressure)
# getter
def get_current_Q(self):
Q = 0
for i in range(self.n_turbines):
Q += self.turbines[i].get_current_Q()
return Q
def get_current_LAs(self):
LAs = []
for i in range(self.n_turbines):
LAs.append(self.turbines[i].get_current_LA())
return np.array(LAs)
def get_current_pressure(self):
pressures = []
for i in range(self.n_turbines):
pressures.append(self.turbines[i].get_current_pressure())
return np.array(pressures) # consider taking the average, after evaluating how the converge() method affects the result
def get_n_turbines(self):
return self.n_turbines
def get_info(self):
for turbine in self.turbines:
turbine.get_info(full=True)
# methods
def identify_Q_proportion(self):
Q_n_vec = np.zeros(self.n_turbines)
for i in range(self.n_turbines):
Q_n_vec[i] = self.turbines[i].get_Q_n()
self.Q_prop = Q_n_vec/np.sum(Q_n_vec)
def add_turbine(self,turbine):
self.turbines.append(turbine)
self.n_turbines += 1
def update_LAs(self,LA_soll_vec):
for i in range(self.n_turbines):
self.turbines[i].update_LA(LA_soll_vec[i])
def converge(self,convergence_parameters):
# small numerical disturbances (~1e-12 m/s) in the velocity can get amplified at the turbine node, because the new velocity of the turbine and the
# new pressure from the forward characteristic are not perfectly compatible.
# Therefore, iterate the flux and the pressure so long, until they converge
eps = 1e-12 # convergence criterion: iteration change < eps
iteration_change = 1. # change in Q from one iteration to the next
i = 0 # safety variable. break loop if it exceeds 1e6 iterations
g = self.g # gravitational acceleration
p = convergence_parameters[0] # pressure at second to last node (see method of characterisctics - boundary condidtions)
v = convergence_parameters[1] # velocity at second to last node (see method of characterisctics - boundary condidtions)
D = convergence_parameters[2] # diameter of the pipeline
area_pipe = convergence_parameters[3] # area of the pipeline
alpha = convergence_parameters[4] # elevation angle of the pipeline
f_D = convergence_parameters[5] # Darcy friction coefficient
c = convergence_parameters[6] # pressure wave propagtation velocity
rho = convergence_parameters[7] # density of the liquid
dt = convergence_parameters[8] # timestep of the characteristic method
Q_old = self.get_current_Q()
v_old = Q_old/area_pipe
while iteration_change > eps:
p_new = p-rho*c*(v_old-v)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v)*v
self.set_pressure(p_new)
Q_new = self.get_current_Q()
v_new = Q_new/area_pipe
iteration_change = abs(Q_old-Q_new)
Q_old = Q_new.copy()
v_old = v_new.copy()
i = i+1
if i == 1e6:
print('did not converge')
break
# print(i)