Files
Python-DT_Slot_3/Druckrohrleitung/Druckrohrleitung_class_file.py
Brantegger Georg 9c70ce3d8d Merge branch 'Dev'
2022-07-25 10:28:37 +02:00

178 lines
8.2 KiB
Python

import numpy as np
#importing pressure conversion function
import sys
import os
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
class Druckrohrleitung_class:
# units
acceleration_unit = r'$\mathrm{m}/\mathrm{s}^2$'
angle_unit = 'rad'
area_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
length_unit = 'm'
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$' # for flux and pressure propagation
volume_unit = r'$\mathrm{m}^3$'
acceleration_unit_print = 'm/s²'
angle_unit_print = 'rad'
area_unit_print = ''
density_unit_print = 'kg/m³'
flux_unit_print = 'm³/s'
length_unit_print = 'm'
time_unit_print = 's'
velocity_unit_print = 'm/s' # for flux and pressure propagation
volume_unit_print = ''
# init
def __init__(self,total_length,diameter,number_segments,pipeline_angle,Darcy_friction_factor,rho=1000,g=9.81):
self.length = total_length
self.dia = diameter
self.n_seg = number_segments
self.angle = pipeline_angle
self.f_D = Darcy_friction_factor # = Rohrreibungszahl oder flow coefficient
self.rho = rho
self.g = g
self.dx = total_length/number_segments
self.l_vec = np.arange(0,(number_segments+1)*self.dx,self.dx)
# initialize for get_info method
self.c = '--'
self.dt = '--'
# setter
def set_pressure_propagation_velocity(self,c):
self.c = c
self.dt = self.dx/c
def set_number_of_timesteps(self,number_timesteps):
self.nt = number_timesteps
if self.c == '--':
raise Exception('Please set the pressure propagation velocity before setting the number of timesteps.')
else:
self.t_vec = np.arange(0,self.nt*self.dt,self.dt)
def set_initial_pressure(self,pressure,pressure_unit,display_pressure_unit):
if np.size(pressure) == 1:
self.p0 = np.full_like(self.l_vec,pressure)
elif np.size(pressure) == np.size(self.l_vec):
self.p0 = pressure
else:
raise Exception('Unable to assign initial pressure. Input has to be of size 1 or' + np.size(self.l_vec))
self.pressure_unit = pressure_unit
self.pressure_unit_print = display_pressure_unit
#initialize the vectors in which the old and new pressures are stored for the method of characteristics
self.p_old = self.p0.copy()
self.p = np.empty_like(self.p_old)
def set_initial_flow_velocity(self,velocity):
if np.size(velocity) == 1:
self.v0 = np.full_like(self.l_vec,velocity)
elif np.size(velocity) == np.size(self.l_vec):
self.v0 = velocity
else:
raise Exception('Unable to assign initial velocity. Input has to be of size 1 or' + np.size(self.l_vec))
#initialize the vectors in which the old and new velocities are stored for the method of characteristics
self.v_old = self.v0.copy()
self.v = np.empty_like(self.v_old)
def set_boundary_conditions_next_timestep(self,v_reservoir,p_reservoir,v_turbine):
rho = self.rho
c = self.c
f_D = self.f_D
dt = self.dt
D = self.dia
g = self.g
alpha = self.angle
p_old = self.p_old[-2] # @ second to last node (the one before the turbine)
v_old = self.v_old[-2] # @ second to last node (the one before the turbine)
self.v_boundary_res = v_reservoir # at new timestep
self.v_boundary_tur = v_turbine # at new timestep
self.p_boundary_res = p_reservoir
self.p_boundary_tur = p_old-rho*c*(v_turbine-v_old)+rho*c*dt*g*np.sin(alpha)-f_D*rho*c*dt/(2*D)*abs(v_old)*v_old
self.v[0] = self.v_boundary_res.copy()
self.v[-1] = self.v_boundary_tur.copy()
self.p[0] = self.p_boundary_res.copy()
self.p[-1] = self.p_boundary_tur.copy()
def set_steady_state(self,ss_flux,ss_level_reservoir,pl_vec,h_vec,pressure_unit,display_pressure_unit):
ss_v0 = np.full(self.n_seg+1,ss_flux/(self.dia**2/4*np.pi))
ss_pressure = (self.rho*self.g*(ss_level_reservoir+h_vec)-ss_v0**2*self.rho/2)-(self.f_D*pl_vec/self.dia*self.rho/2*ss_v0**2)
self.set_initial_flow_velocity(ss_v0)
self.set_initial_pressure(ss_pressure,pressure_unit,display_pressure_unit)
# getter
def get_info(self):
new_line = '\n'
angle_deg = round(self.angle/np.pi*180,3)
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The pipeline has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Length = {self.length:<10} {self.length_unit_print} {new_line}"
f"Diameter = {self.dia:<10} {self.length_unit_print} {new_line}"
f"Number of segments = {self.n_seg:<10} {new_line}"
f"Number of nodes = {self.n_seg+1:<10} {new_line}"
f"Length per segments = {self.dx:<10} {self.length_unit_print} {new_line}"
f"Pipeline angle = {round(self.angle,3):<10} {self.angle_unit_print} {new_line}"
f"Pipeline angle = {angle_deg}° {new_line}"
f"Darcy friction factor = {self.f_D:<10} {new_line}"
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
f"Pressure wave vel. = {self.c:<10} {self.velocity_unit_print} {new_line}"
f"Simulation timestep = {self.dt:<10} {self.time_unit_print} {new_line}"
f"Number of timesteps = {self.nt:<10} {new_line}"
f"Total simulation time = {self.nt*self.dt:<10} {self.time_unit_print} {new_line}"
f"----------------------------- {new_line}"
f"Velocity and pressure distribution are vectors and are accessible by the .v and .p attribute of the pipeline object")
print(print_str)
def get_boundary_conditions_next_timestep(self):
print('The pressure at the reservoir for the next timestep is', '\n', \
pressure_conversion(self.p_boundary_res,self.pressure_unit,self.pressure_unit_print), '\n', \
'The velocity at the reservoir for the next timestep is', '\n', \
self.v_boundary_res, self.velocity_unit_print, '\n', \
'The pressure at the turbine for the next timestep is', '\n', \
pressure_conversion(self.p_boundary_tur,self.pressure_unit,self.pressure_unit_print), '\n', \
'The velocity at the turbine for the next timestep is', '\n', \
self.v_boundary_tur, self.velocity_unit_print)
def timestep_characteristic_method(self):
#number of nodes
nn = self.n_seg+1
rho = self.rho
c = self.c
f_D = self.f_D
dt = self.dt
D = self.dia
g = self.g
alpha = self.angle
for i in range(1,nn-1):
self.v[i] = 0.5*(self.v_old[i+1]+self.v_old[i-1])-0.5/(rho*c)*(self.p_old[i+1]-self.p_old[i-1]) \
+dt*g*np.sin(alpha)-f_D*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]+abs(self.v_old[i-1])*self.v_old[i-1])
self.p[i] = 0.5*(self.p_old[i+1]+self.p_old[i-1]) - 0.5*rho*c*(self.v_old[i+1]-self.v_old[i-1]) \
+f_D*rho*c*dt/(4*D)*(abs(self.v_old[i+1])*self.v_old[i+1]-abs(self.v_old[i-1])*self.v_old[i-1])
self.p_old = self.p.copy()
self.v_old = self.v.copy()