Files
Python-DT_Slot_3/functions/flow_patterns.ipynb
2022-05-18 15:46:04 +02:00

139 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"from plotly.subplots import make_subplots\n",
"import plotly.graph_objects as go\n",
"from flow_patterns import return_flux_profiles,make_flux_df\n",
"from volume_change import V_h_test_2,h_V_test_2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# #constant flows\n",
"# #number of steps\n",
"# n = 100\n",
"# #input identifiers\n",
"# i_i_1 = 0\n",
"# #output identifiers\n",
"# o_i_1 = 0\n",
"# # influx and outflux offset\n",
"# i_o = 10\n",
"# o_o = 10\n",
"# #outflux delay\n",
"# o_d = 10\n",
"\n",
"# influx_profile,outflux_profile = return_flux_profiles(n,i_i_1,o_i_1,i_o,o_o,o_d)\n",
"# flux_df = make_flux_df(influx_profile,outflux_profile)\n",
"\n",
"# fig = make_subplots(2,1)\n",
"\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n",
"# fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# #linear increasing flows\n",
"# #number of steps\n",
"# n = 100\n",
"# #input identifiers\n",
"# i_i_2 = 'lin_0010'\n",
"# #output identifiers\n",
"# o_i_2 = 'lin_0010'\n",
"# # influx and outflux offset\n",
"# i_o = 10\n",
"# o_o = 10\n",
"# #outflux delay\n",
"# o_d = 10\n",
"\n",
"# influx_profile,outflux_profile = return_flux_profiles(n,i_i_2,o_i_2,i_o,o_o,o_d)\n",
"# flux_df = make_flux_df(influx_profile,outflux_profile)\n",
"\n",
"# fig = make_subplots(2,1)\n",
"\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n",
"# fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# #sawtooth flows\n",
"# #number of steps\n",
"# n = 100\n",
"# #input identifiers\n",
"# i_i_3 = 'st_0010_0010'\n",
"# #output identifiers\n",
"# o_i_3 = 'st_0010_0010'\n",
"# # influx and outflux offset\n",
"# i_o = 10\n",
"# o_o = 10\n",
"# #outflux delay\n",
"# o_d = 10\n",
"\n",
"# influx_profile,outflux_profile = return_flux_profiles(n,i_i_3,o_i_3,i_o,o_o,o_d)\n",
"# flux_df = make_flux_df(influx_profile,outflux_profile)\n",
"\n",
"# fig = make_subplots(2,1)\n",
"\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['influx']),row=1,col=1)\n",
"# fig.add_trace(go.Scatter(x=flux_df['time'],y=flux_df['outflux']),row=2,col=1)\n",
"# fig.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
},
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}