Files
Python-DT_Slot_3/Regler/regler_test.ipynb
Brantegger Georg 9204729d0b pre-merge commit
2022-07-25 10:25:06 +02:00

344 lines
8.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from Regler_class_file import PI_controller_class\n",
"\n",
"#importing Druckrohrleitung\n",
"import sys\n",
"import os\n",
"current = os.path.dirname(os.path.realpath('Main_Programm.ipynb'))\n",
"parent = os.path.dirname(current)\n",
"sys.path.append(parent)\n",
"from functions.pressure_conversion import pressure_conversion\n",
"from Ausgleichsbecken.Ausgleichsbecken_class_file import Ausgleichsbecken_class\n",
"from Turbinen.Turbinen_class_file import Francis_Turbine"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"#define constants\n",
"\n",
"#Turbine\n",
"Q_nenn = 0.85\n",
"p_nenn,_ = pressure_conversion(10.6,'bar','Pa')\n",
"\n",
"# physics\n",
"g = 9.81 # gravitational acceleration [m/s²]\n",
"rho = 1000. # density of water [kg/m³]\n",
"\n",
"# define controller constants\n",
"target_level = 8. # m\n",
"Kp = 0.1\n",
"Ti = 100.\n",
"deadband_range = 0.05 # m\n",
"\n",
"# reservoir\n",
"initial_level = target_level\n",
"initial_influx = Q_nenn/2 # initial influx of volume to the reservoir [m³/s]\n",
"initial_pressure_unit = 'Pa' # DO NOT CHANGE! for pressure conversion in print statements and plot labels \n",
"conversion_pressure_unit = 'bar' # for pressure conversion in print statements and plot labels\n",
"area_base = 74. # total base are of the cuboid reservoir [m²] \n",
"area_outflux = 1. # outflux area of the reservoir, given by pipeline area [m²]\n",
"critical_level_low = 0. # for yet-to-be-implemented warnings[m]\n",
"critical_level_high = np.inf # for yet-to-be-implemented warnings[m]\n",
"\n",
"p0 = rho*g*initial_level-0.5*rho*(initial_influx/area_outflux)**2\n",
"\n",
"# offset the pressure in front of the turbine to get realisitc fluxes\n",
"h_fict = 100\n",
"offset_pressure = rho*g*h_fict\n",
"\n",
"t_max = 1e3 #s\n",
"nt = int(1e6) # number of simulation steps of reservoir in between timesteps of pipeline \n",
"dt = t_max/nt\n",
"\n",
"t_vec = np.arange(0,nt+1,1)*dt\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"# create objects\n",
"\n",
"V = Ausgleichsbecken_class(area_base,area_outflux,critical_level_low,critical_level_high,dt)\n",
"V.set_steady_state(initial_influx,initial_level,initial_pressure_unit,conversion_pressure_unit)\n",
"\n",
"T1 = Francis_Turbine(Q_nenn,p_nenn)\n",
"T1.set_steady_state(initial_influx,p0+offset_pressure)\n",
"T1.set_closing_time(500)\n",
"\n",
"Pegelregler = PI_controller_class(target_level,deadband_range,Kp,Ti,dt)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"level_vec = np.full(nt+1,V.level)\n",
"LA_ist_vec = np.full(nt+1,T1.LA)\n",
"LA_soll_vec = np.full(nt+1,T1.LA)\n",
"Q_vec = np.full(nt+1,initial_influx)\n",
"\n",
"Pegelregler.control_variable = T1.LA"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n",
"10.0\n",
"20.0\n",
"30.0\n",
"40.0\n",
"50.0\n",
"60.0\n",
"70.0\n",
"80.0\n",
"90.0\n",
"100.0\n",
"110.0\n",
"120.0\n",
"130.0\n",
"140.0\n",
"150.0\n",
"160.0\n",
"170.0\n",
"180.0\n",
"190.0\n",
"200.0\n",
"210.0\n",
"220.0\n",
"230.0\n",
"240.0\n",
"250.0\n",
"260.0\n",
"270.0\n",
"280.0\n",
"290.0\n",
"300.0\n",
"310.0\n",
"320.0\n",
"330.0\n",
"340.0\n",
"350.0\n",
"360.0\n",
"370.0\n",
"380.0\n",
"390.0\n",
"400.0\n",
"410.0\n",
"420.0\n",
"430.0\n",
"440.0\n",
"450.0\n",
"460.0\n",
"470.0\n",
"480.0\n",
"490.0\n",
"500.0\n",
"510.0\n",
"520.0\n",
"530.0\n",
"540.0\n",
"550.0\n",
"560.0\n",
"570.0\n",
"580.0\n",
"590.0\n",
"600.0\n",
"610.0\n",
"620.0\n",
"630.0\n",
"640.0\n",
"650.0\n",
"660.0\n",
"670.0\n",
"680.0\n",
"690.0\n",
"700.0\n",
"710.0\n",
"720.0\n",
"730.0\n",
"740.0\n",
"750.0\n",
"760.0\n",
"770.0\n",
"780.0\n",
"790.0\n",
"800.0\n",
"810.0\n",
"820.0\n",
"830.0\n",
"840.0\n",
"850.0\n",
"860.0\n",
"870.0\n",
"880.0\n",
"890.0\n",
"900.0\n",
"910.0\n",
"920.0\n",
"930.0\n",
"940.0\n",
"950.0\n",
"960.0\n",
"970.0\n",
"980.0\n",
"990.0\n",
"1000.0\n"
]
}
],
"source": [
"# time loop\n",
"\n",
"for i in range(nt+1):\n",
"\n",
" if np.mod(i,1e4) == 0:\n",
" print(t_vec[i])\n",
"\n",
" if t_vec[i] == 0.4*np.max(t_vec):\n",
" V.influx = 0\n",
"\n",
" p = rho*g*V.level-0.5*rho*(V.outflux_vel)**2\n",
"\n",
" LA_soll = Pegelregler.get_control_variable(V.level)\n",
" T1.change_LA(LA_soll,dt)\n",
" LA_soll_vec[i] = LA_soll\n",
" LA_ist_vec[i] = T1.LA\n",
" Q_vec[i] = T1.get_Q(p+offset_pressure)\n",
"\n",
" V.pressure = p\n",
" V.outflux_vel = 1/V.area_outflux*Q_vec[i]\n",
"\n",
" V.e_RK_4() \n",
" V.level = V.update_level(V.timestep) \n",
" V.set_volume() \n",
" level_vec[i] = V.level \n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt5\n",
"# time loop\n",
"\n",
"# create a figure and subplots to display the velocity and pressure distribution across the pipeline in each pipeline step\n",
"fig1,axs1 = plt.subplots(3,1)\n",
"axs1[0].set_title('Level')\n",
"axs1[0].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[0].set_ylabel(r'$h$ [$\\mathrm{m}$]')\n",
"axs1[0].plot(t_vec,level_vec)\n",
"axs1[0].set_ylim([0.85*initial_level,1.05*initial_level])\n",
"axs1[1].set_title('Flux')\n",
"axs1[1].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[1].set_ylabel(r'$Q$ [$\\mathrm{m} / \\mathrm{s}^3$]')\n",
"axs1[1].plot(t_vec,Q_vec)\n",
"axs1[1].set_ylim([0,2*initial_influx])\n",
"axs1[2].set_title('LA')\n",
"axs1[2].set_xlabel(r'$t$ [$\\mathrm{s}$]')\n",
"axs1[2].set_ylabel(r'$LA$ [\\%]')\n",
"axs1[2].plot(t_vec,LA_soll_vec)\n",
"axs1[2].plot(t_vec,LA_ist_vec)\n",
"axs1[2].set_ylim([0,1])\n",
"fig1.tight_layout()\n",
"fig1.show()\n",
"plt.pause(1)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x26263b78be0>]"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig2 = plt.figure()\n",
"plt.plot(t_vec,Pegelregler.error_history[1:])"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[8. 8. 8. ... 7.21126138 7.21126138 7.21126138]\n"
]
}
],
"source": [
"print(level_vec[:])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 ('Georg_DT_Slot3')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "84fb123bdc47ab647d3782661abcbe80fbb79236dd2f8adf4cef30e8755eb2cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}