Files
Python-DT_Slot_3/Ausgleichsbecken/Ausgleichsbecken_class_file.py
Georg ´Brantegger dc5bcfe7f8 fixed a coding mistake that lead to
a missbehavior in the time evolution of the
reservoir
2022-07-28 16:26:04 +02:00

212 lines
9.5 KiB
Python

from logging import exception
import numpy as np
#importing pressure conversion function
import sys
import os
current = os.path.dirname(os.path.realpath(__file__))
parent = os.path.dirname(current)
sys.path.append(parent)
from functions.pressure_conversion import pressure_conversion
def FODE_function(x_out,h,A,A_a,p,rho,g):
# (FODE ... first order differential equation)
# based on the outflux formula by Andreas Malcherek
# https://www.youtube.com/watch?v=8HO2LwqOhqQ
# adapted for a pressurized pipeline into which the reservoir effuses
# and flow direction
# x_out ... effusion velocity
# h ... level in the reservoir
# A_a ... Outflux_Area
# A ... Reservoir_Area
# g ... gravitational acceleration
# rho ... density of the liquid in the reservoir
f = x_out*abs(x_out)/h*(A_a/A-1.)+g-p/(rho*h)
return f
class Ausgleichsbecken_class:
# units
# make sure that units and print units are the same
# units are used to label graphs and print units are used to have a bearable format when using pythons print()
area_unit = r'$\mathrm{m}^2$'
area_outflux_unit = r'$\mathrm{m}^2$'
density_unit = r'$\mathrm{kg}/\mathrm{m}^3$'
flux_unit = r'$\mathrm{m}^3/\mathrm{s}$'
level_unit = 'm'
pressure_unit = 'Pa'
time_unit = 's'
velocity_unit = r'$\mathrm{m}/\mathrm{s}$'
volume_unit = r'$\mathrm{m}^3$'
area_unit_print = ''
area_outflux_unit_print = ''
density_unit_print = 'kg/m³'
flux_unit_print = 'm³/s'
level_unit_print = 'm'
pressure_unit_print = '--' # will be set by .set_pressure() method
time_unit_print = 's'
velocity_unit_print = 'm/s'
volume_unit_print = ''
g = 9.81 # m/s² gravitational acceleration
# init
def __init__(self,area,outflux_area,level_min = 0,level_max = np.inf ,timestep = 1,rho = 1000):
self.area = area # base area of the rectangular structure
self.area_outflux = outflux_area # area of the outlet towards the pipeline
self.density = rho # density of the liquid in the system
self.level_min = level_min # lowest allowed water level
self.level_max = level_max # highest allowed water level
self.timestep = timestep # timestep of the simulation
# initialize for get_info
self.influx = "--"
self.level = "--"
self.outflux = "--"
self.volume = "--"
# setter
def set_initial_level(self,initial_level):
# sets the level in the reservoir and should only be called during initialization
if self.level == '--':
self.level = initial_level
else:
raise Exception('Initial level was already set once. Use the .update_level(self,timestep) method to update level based on net flux.')
def set_level(self,level):
self.level = level
def set_influx(self,influx):
# sets influx to the reservoir in m³/s
# positive influx means that liquid flows into the reservoir
self.influx = influx
def set_outflux(self,outflux):
# sets outflux to the reservoir in m³/s
# positive outflux means that liquid flows out of reservoir the reservoir
self.outflux = outflux
def set_initial_pressure(self,pressure,display_pressure_unit):
# sets the static pressure present at the outlet of the reservoir
# units are used to convert and display the pressure
self.pressure = pressure
self.pressure_unit_print = display_pressure_unit
def set_pressure(self,pressure):
# sets the static pressure present at the outlet of the reservoir
self.pressure = pressure
def set_steady_state(self,ss_influx,ss_level,display_pressure_unit):
# set the steady state (ss) condition in which the net flux is zero
# set pressure acting on the outflux area so that the level stays constant
ss_outflux = ss_influx
ss_influx_vel = abs(ss_influx/self.area)
ss_outflux_vel = abs(ss_outflux/self.area_outflux)
ss_pressure = self.density*self.g*ss_level+self.density*ss_outflux_vel*(ss_influx_vel-ss_outflux_vel)
self.set_influx(ss_influx)
self.set_initial_level(ss_level)
self.set_initial_pressure(ss_pressure,display_pressure_unit)
self.set_outflux(ss_outflux)
# getter
def get_info(self, full = False):
new_line = '\n'
p = pressure_conversion(self.pressure,self.pressure_unit,self.pressure_unit_print)
outflux_vel = self.outflux/self.area_outflux
if full == True:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The cuboid reservoir has the following attributes: {new_line}"
f"----------------------------- {new_line}"
f"Base area = {self.area:<10} {self.area_unit_print} {new_line}"
f"Outflux area = {round(self.area_outflux,3):<10} {self.area_outflux_unit_print} {new_line}"
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
f"Critical level low = {self.level_min:<10} {self.level_unit_print} {new_line}"
f"Critical level high = {self.level_max:<10} {self.level_unit_print} {new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
f"Simulation timestep = {self.timestep:<10} {self.time_unit_print} {new_line}"
f"Density of liquid = {self.density:<10} {self.density_unit_print} {new_line}"
f"----------------------------- {new_line}")
else:
# :<10 pads the self.value to be 10 characters wide
print_str = (f"The current attributes are: {new_line}"
f"----------------------------- {new_line}"
f"Current level = {self.level:<10} {self.level_unit_print}{new_line}"
f"Volume in reservoir = {self.volume:<10} {self.volume_unit_print} {new_line}"
f"Current influx = {self.influx:<10} {self.flux_unit_print} {new_line}"
f"Current outflux = {self.outflux:<10} {self.flux_unit_print} {new_line}"
f"Current outflux vel = {round(outflux_vel,3):<10} {self.velocity_unit_print} {new_line}"
f"Current pipe pressure = {round(p,3):<10} {self.pressure_unit_print} {new_line}"
f"----------------------------- {new_line}")
print(print_str)
def get_current_level(self):
return self.level
def get_current_influx(self):
return self.influx
def get_current_outflux(self):
return self.outflux
def get_current_pressure(self):
return self.pressure
# methods
def update_level(self,timestep):
# update level based on net flux and timestep by calculating the volume change in
# the timestep and the converting the new volume to a level by assuming a cuboid reservoir
# cannot set new level directly in this method, because it gets called to calcuate during the Runge Kutta
# to calculate a ficticious level at half the timestep
net_flux = self.influx-self.outflux
delta_level = net_flux*timestep/self.area
new_level = (self.level+delta_level)
return new_level
def update_pressure(self):
influx_vel = abs(self.influx/self.area)
outflux_vel = abs(self.outflux/self.area_outflux)
p_new = self.density*self.g*self.level+self.density*outflux_vel*(influx_vel-outflux_vel)
return p_new
def timestep_reservoir_evolution(self):
# update outflux and outflux velocity based on current pipeline pressure and waterlevel in reservoir
dt = self.timestep
rho = self.density
g = self.g
A = self.area
A_a = self.area_outflux
yn = self.outflux/A_a # outflux velocity
h = self.level
h_hs = self.update_level(dt/2)
p = self.pressure
p_hs = self.pressure + rho*g*(h_hs-h)
# explicit 4 step Runge Kutta
Y1 = yn
Y2 = yn + dt/2*FODE_function(Y1,h,A,A_a,p,rho,g)
Y3 = yn + dt/2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)
Y4 = yn + dt*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)
ynp1 = yn + dt/6*(FODE_function(Y1,h,A,A_a,p,rho,g)+2*FODE_function(Y2,h_hs,A,A_a,p_hs,rho,g)+ \
2*FODE_function(Y3,h_hs,A,A_a,p_hs,rho,g)+ FODE_function(Y4,h,A,A_a,p,rho,g))
new_outflux = ynp1*A_a
new_level = self.update_level(dt)
new_pressure = self.update_pressure()
self.set_outflux(new_outflux)
self.set_level(new_level)
self.set_pressure(new_pressure)